Introduction to Design Patternsin C#

Copyright © 2002 by James W. Cooper
IBM T JWatson Research Center
February 1, 2002

Copyright © , 2002 by James W Cooper

1. What areDesign Patterns?ccccecveeeveciee s 21
Defining DeSIgN PaternsScccvieeieeienee e e 23
The Learning PrOCESS........cccuiirirene et 25
Studying DeSigN PatternsS.........cccveiiieeiieie e 26
Notes on Object-Oriented APProaches........ccooveereerenieneesiescee e 26
CH DESIQN PaterNS.....ceeieieieeeieeeeeeeter e 27
How This BOOK ISOrganizedcceovveeveeneeeseese e ee e 28

2. Syntax of the CHLanguagecccevvveeveeviiieiee et 29
Data TYPESveiieeeeeee e s 30
Converting Between Numbers and Strings.......cocveeeeeeveceeseeeseeseeneens 32
Declaring Multiple Variables...........ccoovveeiieieciececce e 32
NUMENTC CONSEANES.eeieeieiesieeie et 32
Character CONSIANTSccveveeeeieerie e nee s 33
VaADIES ... s 33

Declaring Variables as You Use Them........ccocceveieninninnencieseens 34
Multiple Equals Signs for Initialization...........cccceveveneneneneneneene 34
A SIMPIE CH PrograM.......c.ccveieeeeieesieseesreesie e seessesessseeseessessseesseens 34

Compiling & Running This Program...........cccccevveviienieeccecsee e, 36
ATTNMELIC OPEIELOS.......evieieeieeeeeeie ettt 36
Increment and Decrement OPEratorsScccvevvveereereeeieeseesie e seeneenns 37
Combining Arithmetic and Assignment Statements............ccccceveeenen. 37
Making DECISIONS IN CH......oovueeiiiienieeie e e 38
COompPariSON OPEIAIOLSccueeueeeeieieriesie sttt sbe s enens 39

Copyright © , 2002 by James W Cooper

Combining CoNAItIONSccceeiieiiceeceece e 39
The Most ComMMON MiStaKeccveiiriiiieereeee e 40
The SWItCh StaEemMENtc.ccoveveeeeeeee e e 41
CH COMMENES......coiiieieeeie e sne e sane e 41
The Ornery Ternary OPEralorcooeeeereerieneeseeiee e seesee e seeseeses 42
Looping StAEMENES IN CH.....ooveeeierieeiereeee s 42
The Whil€ LOOPc.eeeeeeiece ettt 42
The do-while StAtemMEeNt ..o 43
THE FOI LOOP ..ttt 43
Declaring Variables as Needed in FOr LOOPSccoevveeeeveenieeiieseeens 44
Commas in for LOOp StAEMENES.........ccveiieiieeiieie e 44
HOW C# DIfferS From C ..o 45
SUMIMIY ..ttt sr e e e nne e nnesaeenns 46
3. Writing Windows C# Programscccceeeeeveeveeseesesieeseeseessen e 47
ODJECES TN CH...e e a7
Managed Languages and Garbage Collection...........cccocceveevvrcnneennnns 48
Classes and NamespacesS iN CH.......ooveveerevieeseere e ee e 48
Building a C# APPlICALTIONocivieiie e 49
The Simplest Window Program in C..........cccceoeieieneneneneneseeeees 50
WiINAOWS CONIOIS ..ot 54
LADEIS ..t 55
TEXIBOX ..t 95
CRECKBOX....uveeeieiteeie et eie st ee st te e e s s e te e e sseennesneennenn 56

Copyright © , 2002 by James W Cooper

BULLONS ... e s 56
RadiO DULEONS ... 56
Listboxes and Combo BOXES.........cccccveeereereeenieseee s e 57
The 1[temS COHECHION.coiiiieiereee s 57
IMEBINUS......ceeieee e s s snne e 58

T OO TIPS, e ettt 58
Other WIindows CONIOIScoeiererenininieesesie e 59
The Windows ControlS Programcccceveveieeniecieesee e see e 59
SUMIMIY ...ttt n e 61
Programs on the CD-ROMcccceiieieiie e 47
4. Using Classesand ODbjectSin CH......cccceeveeeeviecce e 62
What DO We Use Classes FOr?......ooineeneeseeeeee e 62
A Simple Temperature Conversion Program...........ccccoeveeeneneseneene 62
Building a Temperature Class.........cccueveeeeieeieeieseese s 64
Converting to KEIVIN........ooiiieeeee e 67
Putting the Decisions into the Temperature Class.........c.ccooeverereennne. 67
Using Classes for Format and Value Conversion..........cccoceevveeeeeennnns 68
Handling Unreasonable ValUes...........cccooveeveeiiiivie s 71

A StriNg TOKENIZEN ClESS......cceeeeieierierie st 71
(=SS S-SR S @ o= £ 73
Class CONAINMENTeiirieieieie e 75
LT T2 (o] o SRR 76
Classes and Propartis.ot 77

Copyright © , 2002 by James W Cooper

Programming Styl€ in CH........occueeeeieeie e 79
SUMMIBIY ...ttt b e s e e e be e s s e e be e saneenneesnneeneens 80
Programs on the CD-ROM ... 62
5. INNEMTANCE. ... e 81
CONSITUCTONS ...ttt be e e e sne e ean e 81
Drawing and GraphiCSin CH........cccoiiiieninieeeeesese s 82
USING INNENTANCEccveeeeceeeie e 84
NAIMESPACES.eecreiecieeeciie e rtee e e sbe e sbe e sre e e nareas 85
Creating a Square From a Rectangle...........cooeieieiinineneneeeeees 86
Public, Private and Protectedccoeverenerieeieiesese e 88
(@77= 1 107=o 1 oo 1S 89
Virtual and Override KeyWOrdS..........ccoceeveeienienenie e 89
Overriding Methods in Derived Classes.........cveeeeeneneneneneseeeees 90
Replacing Methods USiNg NEWccveeeieeieciecece e 91
Overriding Windows CONtrolS.........cocoveererieneenienie e 92
1= =00 S 9
ADSITECE ClESSES ...t 95
Comparing Interfaces and Abstract Classes........cccccvvcvevieccieesee e, 97
SUMIMIY ...ttt e e n e 99
Programs on the CD-ROMcccccvieieiiee e 99
6. UML DIiaQrams........ccceiiiieiieie e ceesteeie s st eee e snne e ene e 100
INNENTTANCE.......eeieieieeeeee e ee s 102
1= =00 OSSR 103

Copyright © , 2002 by James W Cooper

(@0 10107015] (o] o S 103
N 070 = 4 o o RS TRR 105
WithClass UML Diagramscccooevenereneneeeeneeseesie s 106
CHPIOJECE FIIES.... ottt 106
7. Arrays, Filesand EXceptionSin C#cccccovervvnenenieneeneeene 107
ATTAYS. oo 107
ColleCtion ODJECES......cveieeiecee e 108
F N = Y S £ TSR 108
HaShtaDIES ..o s 109
SOMEOLISES ...t 110
(o= o]0 R 110
MUItIPIE EXCEPLIONS ...t 112
Throwing EXCEPLIONSccoueiiriirieriesie e 113
L= = o [o U 113
The File ODJECL........ooeeeee e 113
Reading TeXt File.....ooo s 114
WHHING @ TEXE FIlE...oueeieeecee e 114
Exceptions in File HaNAIiNG.........ccooveiieiece e 114
Testing for ENd of File.......cooiiieeeee e 115
A CSFIlE CIBSS....ceiieeee e 116
8. TheSimpleFactory Pattern........ccccoeveveeveese e 121
How a Simple Factory WOrKS..........ccooierineeneee e 121
SAMPIE COUR ... 122

Copyright © , 2002 by James W Cooper

The TWO Derived Classes. ... 122
Building the SImple Factory ... 123
USING the FaCIOTY......cceiieieieiesie s 124
Factory Patternsin Math Computation............cccceeeeveereeceseeseeeee 125
Programs on the CD-ROM ..o s 128
Thought QUESLIONSeeeiiieiiieie e 128
9. TheFactory Methodcccvveeiecieceesece e 129
The SWIMMEr ClaSS.......ooiiiiieee e 132
The EVENS ClaSSES......ccveierierieeieseesee ettt 132
Straight SEEAINGcceeceeeeeere e e 133
CIrcle SEEdiNGc.ccieeieceece e 134
Our Seeding Program...........coeeeneeieseeseeee e s 134
(@1 0Tc g =oi (0] == S 135
When to Use a Factory Methodcccooeeieccecce e 136
Thought QUESLION........ccuiiiiiieiee e 136
Programs on the CD-ROM ... 136
10. TheAbstract Factory Pattern........ccccoceveeceveeieeceeseese e 137
A GardenMaKer FaCtOryccecuveiieiie e 137
THEe PICTUrEBOX ...cueieeeiece et 141
Handling the RadioButton and Button Events............cccccccevveenee. 142
Adding More Classes........cccccueiieieiee e 143
Consequences of ADstract FaCtory..........oceovveerenienieeneee e 144
Thought QUESHION........ccueieeiieiiie e 144

Copyright © , 2002 by James W Cooper

Programs on the CD-ROMccccceviiiececeese e 144
11. The SIngleton Patterncocoveeienineee e 145
Creating Singleton Using a Static Method.............cccooevininencneeenne 145
EXceptions and INSLANCEScceeveeieiierieces e 146
Throwing the EXCEPLION.........cceeiiieiieeie e 147
Creating an Instance of the Class..........coverereeiererese e 147
Providing a Global Point of Accessto a Singleton...........ccccceevvveueenee. 148
Other Consequences of the Singleton Pattern...........cccccevvevcieenieenee. 149
Programs on Your CD-ROMcccoiiiiiiiinieecee e 149
12. TheBuilder Pattern.......cccoviiiienenireresese e 150
AN TNVESIMENE TTACKENcviiiieiieieeerie e 151
The StOCK FaCOrYcoiiiiiieeeeeeee e 154

The CheckChoiCe ClasS.......ccciveieriere e 155

The ListboXChOiCe ClaSS......cuoiiiiiinirieniieieeee et 156
Using the Items Collection in the ListBox Controlccccceeeeuennee. 157
PlOttiNG the Daa........coeeeeeieieiese s 158

The Final ChOICE.ccceiiieeee e 159
Consequences of the Builder Pattern...........cccocevveeveeveeiiiecieccieesies 160
Thought QUESLIONSeieiiieieeiee e 161
Programs on the CD-ROMccceviiieieeieseese e 161
13. ThePrototype PatterN......cccceveeveieceece e 162
ClONING 1N CH ..o e 163
USING the ProtOtYPe.......c.eeueeeeieie s 163

Copyright © , 2002 by James W Cooper

CloNiNG the ClasScccvieeice et 167
Using the Prototype Pattern............cccoveeienieneeneeee e 170
Dissimilar Classes with the Same Interface...........cccocvevvvcereeeenee. 172
Prototype ManNagErSccueeiiiieiiiee e 176
Consequences of the Prototype Pattern...........cccoocevveieneeinnienieeenne 176
Thought QUESHION........ccueieicieeeieie e 177
Programs on the CD-ROMccccciiieiecieseese e 177
Summary of Creational Patterns...........cccceeveevenvieevee e 178
14. The Adapter Pattern........ccooiiiiiiinieeeieee e 180
Moving Data BetWeen ListS.......ccoveveviereeie e 180
MaKing an AdaPLENccoeeieciece e e 182
USiNg the DataGridccooeeienieieeie e s 183
Detecting ROW SElECHON........ccoieiirerierieeee s 186
USING @ TIEEVIEW ..ottt s 186
The ClassS AQaPLEScceeieieeeeee e 188
TWO-Way APLENS......c.ooeieeeee e 190
Object Versus Class Adaptersin CH........ccceeeeeeveeneeceeseeseecee e 190
Pluggable Adapters........cooe e 191
Thought QUESHION........ecuiieiieeeeieie e 191
Programs on the CD-ROMccceviiieieeieseese e 191
15, TheBridgePattern........ccccoiieieeiececeece e 192
The ViISList Classes......ccoiiiiiiieeeeeeie et 195
The Class DIagram.........ccccceirinerese e 196

Copyright © , 2002 by James W Cooper

Extending the Bridgecoveeieeiece e 197
Windows FOrms aS BridgesScccuveererrineineeie e 201
Consequences of the Bridge Pattern.........c.ccoceeeveieneneseneseseeene 202
Thought QUESLION........ccueeieceeceee e 203
Programs on the CD-ROM ..o s 203
16. The Composite Pattern.......ccocoivereriiieeeee e 204
An Implementation of a COMPOSILE........c.ccereererieieereee e 205
COMPULING SAIAIMES......ccceeiiieiie e 206
The Employee Classes.........ooeiiiiieneeeeeeeeeee e 206
ThE BOSS ClaSS......ccuiiiiiiiiiicieie et 209
Building the EMpPIOYEE Tre.......cov e 210
SE-PrOMOtION. ..o e 213
Doubly LIiNKE LiSIS....cccuiiiieiiieriesie e 213
Consequences of the Composite Pattern............cccceeveveereececieesieennenn 215
A SIMPlIe COMPOSITE....cveiiiieieiiieie e 215
CompoSItES IN INET ... 216
Other Implementation ISSUEScccveveeeerecie e 216
Thought QUESLIONSccueiiiieie e e 216
Programs on the CD-ROM ... 217
17. The Decorator PatterN.......cccoeverireriieiesese e 218
Decorating a COOIBULLON............ccoviieiierieeie e 218
Handling events in @ DECOIatOrcoveieriereereeie e 220
Layout CONSIEIELIONScoouervereerienreriesierieeee e 221

Copyright © , 2002 by James W Cooper

Control Size and POSITION........ccoviiirineneniree e 221
MUItIPIE DECOIELONScveeeeeieeiee ettt 222
NONVISUl DECOIELOIS.civeeeeereerieeieseesieeiesseesieeeesseesseeeesseeseeeseesnes 225
Decorators, Adapters, and COMPOSILES.........ccceevveecieveeseeiieseese e 226
Consequences of the Decorator Pattern............cooceeveeeeneeinsieeniennene 226
Thought QUESLIONSeeeiiieiiieie e 226
Programs on the CD-ROMccccciiieiecieseese e 227

18. TheFagade Pattern........ccoiiiiiinireeee e 228
What 1S @ Dalabase?........ccovieeieeiene e 228
Getting Data Out Of Databases.........cccvevveeeereerieieereee e 230
Kinds Of DataDases.........ueeeieriinierise s 231
(@] 2 S 232
Dataase SITUCIUNEcceeeeeeeeeeerece e e 232
USING ADONET ..ottt s 233

Connecting to aDatabase...........covvreeiieiiee e 233

Reading Data from a Database Table. ... 234

dtable = dset. Tabl @S [0]] cireerrerererrierereeererereeereeeeeeeeerereeererereeeeeeens 235

EXECUtiNg @ QUENY.......ooiiiiiie ettt st e 235

Deleting the Contents of a Table..........cooovveeieeieiiieeeee 235
Adding Rows to Database Tables Using ADO.NETcccccevvvennnnee. 236
Building the Fagade Classescccevveveeiiecee e 237

Building the Price QUETY ... 239
Making the ADO.NET Fagade..........ccocereriririiieesesie e 239

Copyright © , 2002 by James W Cooper

The DBTaDIE ClESS......cceeieieieiesie e 242
Creating Classes for Each Tablec.ooooiieiiiiiee 244
Building the Price Tableccoiiiiiieeeeeeee e 246
Loading the Database TableS........ccoeveeveeieeeecece e 249
The Final APPlICALIONcoeiiieeeeesee e 251
What Constitutes the Fagade?............cccooeririnieneeee e 252
Consequences of the Fagade...........ccecvveeveece s 253
Thought QUESLION........ccueeiiieiie et 253
Programs on the CD-ROM ... 253

19. TheFlyweight Pattern.......ccccccoveeiecceseece e 254
DISCUSSION......oviiitisiisiie ettt sttt e e st st st sbenreesenneenean 255
EXaMPIE COUE......coouieieiieeieeee e 256

The Class DIagram.........cccceerineneseseseseeeeee s 261

Selecting @FOldercocveeee e 261
Handling the Mouse and Paint EVENtS...........cccooveiiveenenienceneeee 263
Flyweight USES N CH......ooeiieeeese e 264
Sharable ODJECESccueeieeeeceere e 265
CopY-0r-WIite ODJECLS......ccveeieeciiecee e 265
Thought QUESHION........ecuiieiieeeeieie e 266
Programs on the CD-ROMccceviiieieeieseese e 266

20. TheProxy PatterN.......cciieiicieceece et 267
SAMPIE COUR ... e 268
(0= 1 1 S 270

Copyright © , 2002 by James W Cooper

(@00 0)Y2T0] 0 B V1Y) (= S 271
Comparison with Related Patterns............coceveevenieneeneeie e 271
Thought QUESHION........ecuerieiieieie e 271
Programs on the CD-ROMccccoivieiececeece e 271
21. Chain of Responsibility........ccooeeiiiieiiiiineeeeee e 274
APPHCADIHTITY. ... 275
SAMPIE COUR ...t 276
The LISt BOXES....cociiiiiieeie et 280
Programming a Help System ... 282
Receiving the Help Commandccceevvievenie s 286

A ChaiN OF @TIEE? ..o 287
Kinds Of REQUESEScoiuiiieiierieeee e e 289
EXAMPIES TN CH ... 289
Conseguences of the Chain of Responsibilityc.ccccoovevviieiieenee. 290
Thought QUESLION........ccuiiiiiieiee e 290
Programs on the CD-ROM ... 291
22. TheCommand Pattern........cccvoinireniinieierese e 292
IMOLIVALTON. ...ttt e 292
Command ODJECES......c..eiuiriereeieere s 293
Building Command ODJECES..........cccceveeveeieeeeceee e 294
Consequences of the Command Pattern............cccceeveceeveececciesieennene, 297
The CommandHolder INnterfacecoovvereeienieneee e 297
Providing UNdO.........coeiiiiieieeseeseseee e 301

Copyright © , 2002 by James W Cooper

Thought QUESLIONSccueeiecieecieeie et ne s 309
Programs on the CD-ROMcccoiiiiiienineeseeie e s 310
23. Thelnterpreter Pattern......cininicieneese e 311
IMOTIVELION. ...ttt et s 311
APPHCADIHITY.....eeeeeie e 311
A Simple Report EXampleccooeiiinirieeeeee e 312
Interpreting the LangUagEcovevvreereeee s e esie e 314
Objects Used IN ParsiNg.......cccocceeieeiieeiie e ses e s 315
Reducing the Parsed Stack ... 319
Implementing the Interpreter Pattern...........cocevveeeveevecce e 321
The SYNEAX TrEE...c.eiceecece e s 322
Consequences of the Interpreter Pattern...........cocevveeeneeieneeneeeene 326
Thought QUESHION........couiieiiieiiierie s 327
Programs on the CD-ROMccccvevieieeieceeseee e 327
24, Thelterator PatterN.......cccoiiiiiinieiiee e 328
1Y Ko LY Z= (o] o T 328
Sample [terator COAEccveveerieriereee e 329
Fetching an [teratoroocvve e 330
FIltered ITEralorS.ooe e e 331
The Filtered ITeratorcooeeriiesesese e 331
Keeping Track of the Clubs...........cccovieieciecece e 334
Consequences of the Iterator Pattern...........ccoeeveeienieneeie e 335
Programs on the CD-ROM ... 336

Copyright © , 2002 by James W Cooper

25. TheMediator PatterN.......cocviieieninenieeeseese e 337
AN EXample SYStem........ooieeieeeeeee s 337
Interactions Between CONLIolS..........cccvevvreeveereeeeseese e seeseesee e 339
SAMPIE COUE ..ot 341

Initialization of the System ... 345
Mediators and Command ODJECES.........c.cevererieieneree e 345
Consequences of the Mediator Pattern.............cccoceevveceeneevesieesieennene, 347
Single Interface Mediators..........cooveviviiie e 348
IMPleMENtation [SSUES...........eoireeieierierie st 349
Programs on the CD-ROMccccciiieiecieseese e 349

26. TheMemento PatterN.......ccccoiiiinineniinie s 350
1Y KoL AV 7= (o] IO 350
IMPIEMENTALION ... 351
SAMPIE COUE ..ot 351

A CaUtioNary NOLEcocueiiiieeiece e s 358
Command Objects in the User Interface.........cccceeevvvenenenencneeene 358
Handling Mouse and Paint EVENtS...........cccccveveece e 360
Consequences of the Mementoccceieeiiieniee e 361
Thought QUESHION........ecuiieiieeeeieie e 361
Programs on the CD-ROMccceviiieieeieseese e 362

27. TheObserver PatterN ... 363
Watching Colors Changecooeieneeneneneee e 364
The Message to the Media.........ooeveiivenineeeeeee e 367

Copyright © , 2002 by James W Cooper

Consequences of the Observer Pattern............cccocoeeveveeeveece e sieenenn, 368
Programs on the CD-ROMcccoiiiiiieniineeseeie e 369
28, TheState PatterNcieereeieseere e 370
SAMPIE COUE ..ot 370
Switching BEtWEen SEALeS........cccvvieieeieceeeee e e 376
How the Mediator Interacts with the State Managerccocceeveene. 377
The ComdTo0oIBarBULION..........cccceierirenirieeeee e 378
Handling the Fill SEaecccoeveeiieiieee e 381
Handling the UNdo LiSt........ccoooiiiniiininieeeeee e 382
The VisRectangle and VisCircle Classes........cccoeereerevieeseesieseenens 385
Mediators and the GOd ClIaSS.........coueverireniinieeese e 387
Consequences of the State Pattern..........cccocceveeveeveneenense e 388
StAe TraNSIHiONS.eceeieeeieeeese et sre e e 388
Thought QUESLIONSccueeieieecieeiecee e nne s 389
Programs on the CD-ROMcccoiiiiininieneereeie e 389
29. TheStrategy PatterN. ... 390
IMOTIVELTION. ...ttt 390
SAMPIE COUR ...t 391
THE CONLEXL.......coveeieeeeeieee et nre s 392
The Program Commandsccceeveereerienieeseeseseesieesee e sseesaesseensens 393
The Line and Bar Graph Strategi€s.........cccoveveeveeeeieeie e 394
Drawing PlOLS TN CH.....ooueeieeeeieseee e 394
MaKiNg Bar PIOLSccooiiieiiierie s 395

Copyright © , 2002 by James W Cooper

MaKing LinE PlOLS........coeeieceeceee e 396
Consequences of the Strategy Pattern..........cccoccoveeieneneeienieeseeene 398
Programs on the CD-ROM ... 398

30. TheTemplate Method Patterncccocceveevveceiecceccee e, 399
1Y KoL AV 7= (o] IO 399
Kinds of Methods in a Template Class.........cccceveieienenenineneeees 401
SAMPIE COUR ...t 402

Drawing a Standard Trianglecccoveieeiieciee e 404

Drawing an 1S0SceleS TrHangleccvverereeieeieee e 404
The Triangle Drawing Program...........cccceeeereeresseeseesesseessessseseeseens 405
Templates and Callbacksccoveeeiieiiiiesececeee e 406
Summary and CONSEGUENCEScceereerrierreerieeeesieeseeseesseeseeseeseeeeens 407
Programs on the CD-ROM ... 408

31, TheVisStor Pattern ... 409
1Y Ko AV Z= (o] IO 409
When to Use the VISitor Pattern..........cocvevererieierenc e 411
SAMPIE COUR ...t 411
ViSiting the Classes.c.uvccieiie e 413
Visiting Several Classes.........cooeieiinirenieeeeeee e 414
Bosses Are EMPIOYEES, TOOc.eevvveierieriecieceese e 416
Catch-All Operations With VISItOrS........ccccceeveevecieceeceee e 417
Double DIiSPatChiNg.........cooerrieriereeiesie e 419
Why Are We DoiNg ThiS? ..o 419

Copyright © , 2002 by James W Cooper

Traversing a SerieS of ClasseSocvvvveieieeseece e 419
Consequences of the Visitor Pattern...........ccococeevenienenenie e 420
Thought QUESHION........ecuerieiieieie e 420
Programs on the CD-ROMccccoivieiececeece e 421
32. Bibliography ..o 422

Copyright © , 2002 by James W Cooper

19

Preface

Thisis apractical book that tells you how to write C# programs using
some of the most common design patterns. It aso serves as a quick
introduction to programming in the new C# language. The pattern
discussions are structured as a series of short chapters, each describing a
design pattern and giving one or more complete working, visual example
programs that use that pattern. Each chapter also includes UML diagrams
illustrating how the classes interact.

This book is not a"companion” book to the well-known Design Patterns
text. by the "Gang of Four." Instead, it is atutorial for people who want to
learn what design patterns are about and how to use them in their work.

Y ou do not have to have read Design Patterns to read this book, but when
you are done here you may well want to read or reread it to gain additional
insights.

In this book, you will learn that design patterns are frequently used ways
of organizing objects in your programs to make them easier to write and

modify. You'll also see that by familiarizing yourself with them, you've
gained some valuable vocabulary for discussing how your programs are

constructed.

People come to appreciate design patterns in different ways—from the
highly theoretical to the intensely practica—and when they finally see the
great power of these patterns, an “Ahal” moment occurs. Usuadly this
moment means that you suddenly have an internal picture of how that
pattern can help you in your work.

In this book, we try to help you form that conceptual idea, or gestalt, by
describing the pattern in as many ways as possible. The book is organized
into six main sections: an introductory description, an introduction to C#,
and descriptions of patterns, grouped as creational, structural, and
behavioral.

Copyright © , 2002 by James W Cooper

20

For each pattern, we start with a brief verbal description and then build
simple example programs. Each of these examplesis avisua program that
you can run and examine to make the pattern as concrete a concept as
possible. All of the example programs and their variations are on the
companion CD-ROM, where you run them, change them, and see how the
variations you create work.

Since each of the examples consists of a number of C# files for each of the
classes we use in that example, we provide a C# project file for each
example and place each example in a separate subdirectory to prevent any
confusion. This book is based on the Beta-2 release of Visua Studio.Net.
Any changes between this version and the final product will probably not
be great. Consult the AddisonWesley website for updates to any example
code.

If you leaf through the book, you'll see screen shots of the programs we
developed to illustrate the design patterns, providing yet another way to
reinforce your learning of these patterns. In addition, you’ Il see UML
diagrams of these programs, illustrating the interactions between classesin
yet another way. UML diagrams are just simple box and arrow
illustrations of classes and their inheritance structure, where arrows point
to parent classes, and dotted arrows point to interfaces. And if you're not
yet familiar with UML, we provide a simple introduction in the second
chapter.

When you finish this book, you'll be comfortable with the basics of design
patterns and will be able to start using them in your day-to-day C#
programming work.

James W. Cooper
Nantucket, MA
Wilton, CT
Kona, HI

Copyright © , 2002 by James W Cooper

21

1. What are Design Patterns?

Sitting at your desk in front of your workstation, you stare into space,
trying to figure out how to write a new program feature. Y ou know
intuitively what must be done, what data and what objects come into play,
but you have this underlying feeling that there is a more elegant and
genera way to write this program.

In fact, you probably don’t write any code until you can build a picturein
your mind of what the code does and how the pieces of the code interact.
The more that you can picture this “organic whole,” or gestalt, the more
likely you are to fed comfortable that you have developed the best
solution to the problem. If you don’t grasp this whole right away, you may
keep staring out the window for atime, even though the basic solution to
the problem is quite obvious.

In one sense you fed that the more elegant solution will be more reusable
and more maintainable, but even if you are the sole likely programmer,
you feel reassured once you have designed a solution that is relatively
elegant and that doesn’t expose too many internal inelegancies.

One of the main reasons that computer science researchers began to
recognize design patterns is to satisfy this need for elegant, but simple,
reusable solutions. The term “design patterns’” sounds a bit formal to the
uninitiated and can be somewhat offputting when you first encounter it.
But, in fact, design patterns are just convenient ways of reusing object-
oriented code between projects and between programmers. The idea
behind design patterns is simple—write down and catalog common
interactions between objects that programmers have frequently found
useful.

One of the frequently cited patterns from early literature on programming
frameworks is the Model-View-Controller framework for Smalltalk
(Krasner and Pope 1988), which divided the user interface problem into
three parts, as shown in Figure 1-1. The parts were referred to as a data

Copyright © , 2002 by James W Cooper

model, which contains the computational parts of the program; the view,
which presented the user interface; and the controller, which interacted
between the user and the view.

Controller View

Data Model

Figure1-1 - The Mode -View-Controller framework

Each of these aspects of the problem is a separate object, and each has its
own rules for managing its data. Communication among the user, the GUI,
and the data should be carefully controlled, and this separation of
functions accomplished that very nicely. Three objects talking to each
other using this restrained set of connectionsis an example of a powerful
design pattern.

In other words, design patterns describe how objects communicate without
become entangled in each other’ s data models and methods. Keeping this
separation has always been an objective of good OO programming, and if
you have been trying to keep objects minding their own business, you are
probably using some of the common design patterns already.

Design patterns began to be recognized more formally in the early 1990s
by Erich Gamma (1992), who described patterns incorporated in the GUI
application framework, ET++. The culmination of these discussions and a
number of technical meetings was the publication of the parent book in
this series, Design Patterns—Elements of Reusable Software, by Gamma,
Helm, Johnson, and Vlissides (1995). This book, commonly referred to as
the Gang of Four, or “GoF,” book, has had a powerful impact on those
seeking to understand how to use design patterns and has become an all-

Copyright © , 2002 by James W Cooper

23

time bestseller. It describes 23 commonly occurring and generally useful
patterns and comments on how and when you might apply them. We will
refer to this groundbreaking book as Design Patterns throughout this
book.

Since the publication of the original Design Patterns text, there have been
anumber of other useful books published. One closely related book is The
Design Patterns Smalltalk Companion (Alpert, Brown, and Woolf 1998),
which covers the same 23 patterns from the Smalltalk point of view. We'll
refer to this book throughout as the Smalltalk Companion. Finaly, we
recently published Java Design Patterns. a Tutorial, and Visual Basic
Design Patterns, which illustrate al of these patterns in those languages.

Defining Design Patterns

We all talk about the way we do things in our jobs, hobbies, and home life,
and we recognize repeating patterns all the time.

Sticky buns are like dinner rolls, but | add brown sugar and nut filling
to them.

Her front garden is like mine, but | grow astilbe in my garden.

This end table is constructed like that one, but in this one, there are
doors instead of drawers.

We see the same thing in programming when we tell a colleague how we
accomplished atricky bit of programming so he doesn’t have to recreate it
from scratch. We simply recognize effective ways for objects to
communicate while maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the literature
in this field has expanded.

“Design patterns are recurring solutions to design problems you see
over and over.” (The Smalltalk Companion)

Copyright © , 2002 by James W Cooper

24

“Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree 1994)

“Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design and
implementation.” (Coplien and Schmidt 1995)

“A pattern addresses a recurring design problem that arises in specific
design situations and presents a solution to it.” (Buschmannet al.
1996)

“Patterns identify and specify abstractions that are above the level of
single classes and instances, or of components.” (Gammaet al., 1993)

But while it is helpful to draw analogies to architecture, cabinet making,
and logic, design patterns are not just about the design of objects but about
the interaction between objects. One possible view of some of these
patternsis to consider them as communication patterns.

Some other patterns deal not just with object communication but with
strategies for object inheritance and containment. It is the design of
simple, but elegant, methods of interaction that makes many design
patterns so important.

Design patterns can exist at many levels from very low-level specific
solutions to broadly generalized system issues. There are now hundreds of
patterns in the literature. They have been discussed in articles and at
conferences of al levels of granularity. Some are examples that apply
widely, and a few writers have ascribed pattern behavior to class
groupings that apply to just a single problem (Kurata 1998).

It has become apparent that you don’t just write a design pattern off the
top of your head. In fact, most such patterns are discovered rather than
written. The process of looking for these patternsis called “pattern
mining,” and it is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design
Patter ns book were those that had several known applications and that

Copyright © , 2002 by James W Cooper

25

were on amiddle level of generality, where they could easily cross
application areas and encompass several objects.

The authors divided these patterns into three types: creational, structural,
and behavioral.

Creational patterns create objects for you rather than having you
instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

Structural patterns help you compose groups of objects into larger
structures, such as complex user interfaces or accounting data.

Behavioral patterns help you define the communication between
objects in your system and how the flow is controlled in a complex
program.
We'll be looking at C# versions of these patterns in the chapters that
follow, and we will provide at least one complete C# program for each of
the 23 patterns. This way you can examine the code snippets we provide
and also run, edit, and modify the complete working programs on the

accompanying CD-ROM. You'll find alist of al the programs on the CD-
ROM at the end of each pattern description.

The Learning Process

We have found that regardless of the language, learning design patternsis
a multiple-step process.

1. Acceptance
2. Recognition
3. Internalization

First, you accept the premise that design patterns are important in your
work. Then, you recognize that you need to read about design patternsin
order to know when you might use them. Finally, you internalize the

Copyright © , 2002 by James W Cooper

26

patterns in sufficient detail that you know which ones might help you
solve a given design problem.

For some lucky people, design patterns are obvious tools, and these people
can grasp their essential utility just by reading summaries of the patterns.
For many of the rest of us, there is a slow induction period after we've
read about a pattern followed by the proverbia “Ahal” when we see how
we can apply them in our work. This book helps to take you to that final
stage of internalization by providing complete, working programs that you
can try out for yoursalf.

The examples in Design Patterns are brief and are in C++ or, in some
cases, Smalltalk. If you are working in another language, it is helpful to
have the pattern examples in your language of choice. This book attempts
to fill that need for C# programmers.

Studying Design Patterns

There are several aternate ways to become familiar with these patterns. In
each approach, you should read this book and the parent Design Patterns
book in one order or the other. We also strongly urge you to read the
Smalltalk Companion for completeness, since it provides aternative
descriptions of each of the patterns. Finally, there are a number of Web
sites on learning and discussing design patterns for you to peruse.

Notes on Object-Oriented Approaches

The fundamental reason for using design patterns is to keep classes
separated and prevent them from having to know too much about one
another. Equally important, using these patterns helps you avoid
reinventing the wheel and allows you to describe your programming
approach succinctly in terms other programmers can easily understand.

There are anumber of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly all
languages that have OO capabilities support inheritance. A class that
inherits from a parent class has access to al of the methods of that parent

Copyright © , 2002 by James W Cooper

27

class. It al'so has access to all of its nonprivate variables. However, by
starting your inheritance hierarchy with a complete, working class, you
may be unduly restricting yourself as well as carrying along specific
method implementation baggage. Instead, Design Patterns suggests that
you aways

Programto an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class
hierarchy with an abstract class or an interface, which implements no
methods but simply defines the methods that class will support. Then in all
of your derived classes you have more freedom to implement these
methods as most suits your purposes. And since C#6 only supports
interfaces and does not support inheritance, this is obviously very good
advice in the C# context.

The other major concept you should recognize is that of object
composition. Thisis simply the construction of objects that contain others:
encapsulation of several objects inside another one. While many beginning
OO programmers use inheritance to solve every problem, as you begin to
write more elaborate programs, you will begin to appreciate the merits of
object composition.Y our new object can have the interface that is best for
what you want to accomplish without having all the methods of the parent
classes. Thus, the second major precept suggested by Design Patterns is

Favor object composition over inheritance.

C# Design Patterns

Each of the 23 patternsin Design Patterns is discussed, at least one
working program example for that pattern is supplied. All of the programs
have some sort of visua interface to make them that much more
immediate to you. All of them also use class, interfaces, and object
composition, but the programs themselves are of necessity quite smple so
that the coding doesn’t obscure the fundamental elegance of the patterns
we are describing.

Copyright © , 2002 by James W Cooper

28

However, even though C# is our target language, thisisn't specificaly a
book on the C# language. There are lots of features in C# that we don'’t
cover, but we do cover most of what is central to C#. Y ou will find,
however, that thisis afairly useful tutorial in object-oriented
programming in C# and provides good overview of how to programin
C#NET.

How ThisBook |s Organized

We take up each of the 23 patterns, grouped into the general categories of
creational, structural, and behaviora patterns. Many of the patterns stand
more or less independently, but we do take advantage of already discussed
patterns from time to time. For example, we use the Factory and
Command patterns extensively after introducing them, and we use the
Mediator pattern several times after we introduce it. We use the Memento
again in the State pattern, the Chain of Responsibility in the Interpreter
pattern discussion, and the Singleton pattern in the Flyweight pattern
discussion. In no case do we use a pattern before we have introduced it
formally.

We also take some advantage of the sophistication of later patternsto
introduce new features of C#. For example, the Listbox, DataGrid, and
TreeView are introduced in the Adapter and Bridge patterns. We show
how to paint graphics objects in the Abstract Factory, We introduce the
Enumeration interface in the Iterator and in the Composite, where we also
take up formatting. We use exceptions in the Singleton pattern and discuss
ADO.NET database connections in the Fagade pattern. And we show how
to use C# timers in the Proxy pattern.

The overall .NET system is designed for fairly elaborate web-based client-
server interactions. However, in this book, concentrate on object-oriented
programming issues in genera rather than how to write Web-based
systems. We cover the core issues of C# programming and show simple
examples of how Design Patterns can help write better programs.

Copyright © , 2002 by James W Cooper

29

2. Syntax of the C# Language

C# has dl the features of any powerful, modern language. If you are
familiar with Java, C or C++, you'll find most of C# s syntax very
familiar. If you have been working in Visual Basic or related areas, you
should read this chapter to see how C# differs from VB. You'll quickly
see that every major operation you can carry out in Visual Basic.NET has
asimilar operation in C#.

The two mgjor differences between C# and Visua Basic are that C# is
case sensitive (most of its syntax is written in lowercase) and that every

statement in C# is terminated with a semicolon (;). Thus C# statements are
not constrained to a single line and there is no line continuation character.

In Visual Basic, we could write:

y =m* x +b ‘conpute y for given x

or we could write:

Y=M* X+ b ‘conpute y for given x

and both would be treated as the same. The variables Y, M, and X are the
same whether written in upper- or lowercase. In C#, however, caseis
significant, and if we write:

y =m* x + b; /lall |owercase
or.
Y=m* x + b; /1Y differs fromy

we mean two different variables: Y andy. While this may seem awkward
at first, having the ability to use case to make distinctions is sometimes
very useful. For example, programmers often capitalize symbolsreferring
to constants:

Const PI = 3.1416 As Single ‘in VB
const float Pl = 3.1416; /] in C#

Copyright © , 2002 by James W Cooper

The const modifier in C# means that the named value is a constant and
cannot be modified.

Programmers a so sometimes define data types using mixed case and
variables of that data type in lowercase:

class Tenperature { //begin definition of
/I new data type
Tenperature tenp; //tenp is of this new type

WEe'll classes in much more detail in the chapters that follow.

Data Types
The mgjor data types in C# are shown in Table 2-1.
Table2-1 - Datatypesin C#

bool true or false

byte unsigned 8-bit value
short 16-bit integer

int 32-hit integer

long 64-bit integer

float 32-hit floating point
double 64-bit floating point
char 16-bit character
string 16-bit characters

Note that the lengths of these basic types are irrespective of the computer
type or operating system. Characters and strings in C# are always 16 bits
wide: to allow for representation of characters in non-Latin languages. It
uses a character coding system called Unicode, in which thousands of
characters for most major written languages have been defined. Y ou can
convert between variable types in the usual simple ways.

Copyright © , 2002 by James W Cooper

31

Any wider data type can have a narrower data type (having fewer
bytes) assigned directly to it, and the promotion to the new type will
occur automatically. If y is of type float and | is of type int, then you

can write:
float y = 7.0f; /1y is of type float
int j; /1] is of type int
y =j; //convert int to float

to promote an integer to afloat.

Y ou can reduce awider type (more bytes) to a narrower type by
casting it. You do this by putting the data type name in parentheses
and putting it in front of the value you wish to convert:

j = (int)y; /lconvert float to integer
Y ou can also write legal statements that contain casts that might fail, such
as

fl oat x
int k =

= 1. OE45;
(int) x;

If the cast fails, an exception error will occur when the program is
executed.

Boolean variables can only take on the values represented by the reserved
words true and false. Boolean variables also commonly receive values as a
result of comparisons and other logical operations:

int k;
bool ean gt num

gtnum = (k > 6); /ltrue if k is greater than 6

Unlike C or C++, you cannot assign numeric values to a boolean variable
and you cannot convert between boolean and any other type.

Copyright © , 2002 by James W Cooper

32

Converting Between Numbersand Strings

To make a string from a number or a number from a string, you can use
the Convert methods. Y ou can usually find the right one by simply typing
Convert and a dot in the development enviroment, and the system will
provide you with a list of likely methods.

string s = Convert.ToString (x);

float y = Convert. ToSingle (s);

Note that “ Single” means a single-precision floating point number.
Numeric objects also provide various kinds of formatting options to
specify the number of decimal places:

float x = 12.341514325f;

string s =x.ToString ("###. ###"); /1 gives 12.342

Declaring Multiple Variables

Y ou should note that in C#, you can declare a number of variables of the
same type in a single statement:

int i, j;

float x, vy, z;

Thisisunlike VB6, where you had to specify the type of each variable as
you declare it:

Dmi As Integer, j As |nteger
Dmx As Single, y As Single, z As Single
Numeric Constants

Any number you type into your program is automatically of typeint if it
has no fractional part or type double if it does. If you want to indicate that
it isadifferent type, you can use various suffix and prefix characters:

float |oan = 1.23f; /1fl oat
long pig = 45L; /11 ong
int color = 0x12345; / / hexadeci nal

Copyright © , 2002 by James W Cooper

C# also has three reserved word constants: true, false, and null, where null
means an object variable that does not yet refer to any object. We' Il learn
more about objects in the following chapters

Character Constants

Y ou can represent individual characters by enclosing them in single
quotes:

char ¢ = 'q’;

C# follows the C convention that the white space characters (non printing
characters that cause the printing position to change) can be represented
by preceding specia characters with a backslash, as shown in Table 2-2.
Since the backdlash itself is thus a specia character, it can be represented
by using a double backslash

“\n” newline (line feed)
“\r’ carriagereturn
‘“\t’ tabcharacter

‘“\b* backspace

“\f’ form feed

‘\0* null character

“\”’ double quote

“\'’ single quote

“\\" backslash

Table 2-2 Representations of white space and special characters.

Variables

Variable names in C# can be of any length and can be of any combination
of upper- and lowercase letters and numbers, but like VB, the first
character must be a letter. Note that since case is significant in C#, the
following variable names all refer to different variables:

tenperature

Copyright © , 2002 by James W Cooper

Tenper at ure
TEMPERATURE

You must declare all C# variables that you use in a program before you
use them:

int j;

float tenperature

bool ean quit;

Declaring Variables as You Use Them

C# aso alows you to declare variables just as you need them rather than
requiring that they be declared at the top of a procedure:

int k =5;
float x =k + 3 * vy;

Thisis very common in the object-oriented programming style, where we
might declare a variable inside a loop that has no existence or scope
outside that local spot in the program.

Multiple Equals Signsfor Initialization
C#, like C, allows you to initialize a series of variables to the same vaue
in asingle statement
i =) =k =0;
This can be confusing, so don't overuse this feature. The compiler will
generate the same code for:

i =0, j =0, k=0
whether the statements are on the same or successive lines.

A Simple C# Program

Now let’s look at a very smple C# program for adding two numbers
together. This program is a stand-alone program, or application.

using System
cl ass add2

{

Copyright © , 2002 by James W Cooper

static void Main(string[] args)

{
double a, b, c; [//declare variables
a = 1.75; // assi gn val ues
b = 3. 46;
c = a+ b /1 add toget her
/[/print out sum
Console.WiteLine ("sum=" + c);

}

}

This is a complete program as it stands, and if you compile it with the C#
compiler and run it, it will print out the result:

sum = 5.21

Let’s see what observations we can make about this smple program: This
isthe way | want it.

1. You must use the using statement to define libraries of C# code
that you want to use in your program. This is similar to the imports
statement in VB, and similar to the C and C++ #include directive.

2. The program starts from a function called main and it must have
exactly the form shown here:
static void Main(string[] args)

3. Every program module must contain one or more classes.

4. The class and each function within the class is surrounded by
braces{ }.

5. Every variable must be declared by type before or by thetimeit is
used. You could just as well have written:

double a = 1.75;
double b = 3. 46;
double ¢c = a + b

Copyright © , 2002 by James W Cooper

36

6. Every statement must terminate with a semicolon. Statements can
go on for severa lines but they must terminate with the semicolon.

7. Comments start with // and terminate at the end of the line.

8. Like most other languages (except Pascal), the equals sign is used
to represent assignment of data.

9. You can use the + sign to combine two strings. The string *“sum ="
is concatenated with the string automatically converted from the
double precision variable c.

10. The writeLine function, which is a member of the Console classin
the System namespace, can be used to print values on the screen.

Compiling & Running This Program
Thissmple program is called add2.cs. Y ou can compile and execute it by
in the devel opment enviroment by just pressing F5.

Arithmetic Operators

The fundamental operators in C# are much the same as they are in most
other modern languages. Table 2-3 lists the fundamental operatorsin C#

+ addition

- subtraction, unary minus
* multiplication

/ division

% modulo (remainder after integer division)
Table2-3: C# arithmetic operators
The bitwise and logical operators are derived from C rather (see Table
2-4). Bitwise operators operate on individual bits of two words, producing
aresult based on an AND, OR or NOT operation. These are distinct from
the Boolean operators, because they operate on alogica condition which
evaluatesto true or false.

Copyright © , 2002 by James W Cooper

& bitwise And

| bitwise Or

A bitwise exclusive Or
~ one’' s complement
>>n right shift n places
<<n left shift n places

Table 2-4 Logical Operatorsin C#

I ncrement and Decrement Operators
Like Javaand C/C++ , C# alows you to express incrementing and
decrementing of integer variables using the ++and -- operators. You can
apply these to the variable before or after you use it:

i = 5;

j = 10;

X = i++; /Ix =5, theni =6
y = --j; /ly =9 and j =9
Z = ++i; /Ilz =7 and i =7

Combining Arithmetic and Assignment Statements

C# allows you to combine addition, subtraction, multiplication, and
division with the assignment of the result to a new variable:

X =X + 3; //can al so be witten as:
X += 3; //add 3 to x; store result in x

/lalso with the other basic operations:

temp *= 1. 80; //mult tenp by 1.80
z -=T; //subtract 7 fromz
y I=1.3; //divide y by 1.3

Thisis used primarily to save typing; it is unlikely to generate any
different code. Of course, these compound operators (as well asthe ++
and — operators) cannot have spaces between them.

Copyright © , 2002 by James W Cooper

38

Making Decisionsin C#

The familiar if-then-else of Visual Basic, Pascal and Fortran has its analog
in C#. Note that in C#, however, we do not use the then keyword:
if (y>0)

z =x1 vy,
Parentheses around the condition are required in C#. This format can be
somewhat deceptive; as written, only the single statement following the if
is operated on by the if statement. If you want to have several statements
as part of the condition, you must enclose them in braces:

if (y>0)
z =x1vy;
Console.witeLine(“z = + z)
}
By contragt, if you write:
if (y>0)
z =x1 vy,
Console.witeLine(“z = “ + z);

the C# program will always print out z= and some number, because the if
clause only operates on the single statement that follows. Asyou can see,
indenting does not affect the program; it does what you say, not what you
mean.

If you want to carry out either one set of statements or another depending
on a single condition, you should use the else clause aong with the if
statement:
if (y>0)

z =x1vy;

el se
z = 0;

and if the ese clause contains multiple statements, they must be enclosed
in braces, as in the code above.

Copyright © , 2002 by James W Cooper

39

There are two or more accepted indentation styles for bracesin C#
programs.

if (y >0)
{

z =x1vy;
}
The other style, popular anong C programmers, places the brace at the
end of the if statement and the ending brace directly under the if:
if (y>0) {
z =x1 vy,
Consol e.writeLine(“z=" + z);

}
Y ou will see both styles widely used, and of course, they compile to

produce the same resullt.

Comparison Operators

Above, we used the > operator to mean “ greater than.” Most of these
operators are the same in C# as they are in C and other languages. In Table
2-5, note particularly that “is equal to” requires two equal signs and that
“not equal” is different than in FORTRAN or VB.

> greater than

< less than

== isequa to

I = is not equal to

>= greater than or equal to
<= less than or equal to

Table 2-5: Comparison Operatorsin C#

Combining Conditions

When you need to combine two or more conditions in asingle if or other
logica statement, you use the symbols for the logical and, or, and not
operators (see Table 3-6). These are totally different than any other

Copyright © , 2002 by James W Cooper

languages except C/C++ and are confusingly like the bitwise operators
shown in Table 2-6.

&& logical And
| | logical Or
~ logical Not

Table 2-6 Boolean operatorsin C#

So, while in VB.Net we would write:
If (0 <x) Ad (x <= 24) Then

Console.witeLine (“Time is up”)
in C# we would write:

if ((0 <x) & (x <= 24))
Console.witeLine(“Tinme is up”);

TheMost Common Mistake

Since the is equal to operator is== and the assignment operator is= they
can easily be misused. If you write
if (x =0)

Console.witeLine(“x is zero");

instead of:

if (x == 0)

Console.writeLine(“x is zero");
you will get the confusing compilation error, “ Cannot implcitly convert
double to bool,” because the result of the fragment:

(x = 0)
is the double precision number O, rather than a Boolean true or false. Of
course, the result of the fragment:

(x == 0)
is indeed a Boolean quantity and the compiler does not print any error

message.

Copyright © , 2002 by James W Cooper

Vil

The switch Statement

The switch statement allows you to provide alist of possible values for a
variable and code to execute if each istrue. In C#, however, the variable
you compare in a switch statement must be either an integer or a character
type and must be enclosed in parentheses:
switch (j) {
case 12:
System out . printl n(“Noon”);
br eak;
case 13:
Systemout.println(“1l PM);
br eak;
defaul t:
Systemout.println(“some other tinme...");
}

Note particularly that a break statement must follow each case in the
switch statement. This is very important, as it says “go to the end of the
switch statement.” If you leave out the break statement, the code in the
next case statement is executed as well.

C# Comments

Asyou have already seen, comments in C# start with a double forward
slash and continue to the end of the current line. C# also recognizes C-
style comments which begin with /* and continue through any number of
lines until the */ symbols are found.

/1 C# single-line coment

/*other C# coment style*/

/* also can go on
for any nunber of |ines*/

Y ou can’'t nest C# comments; once a comment begins in one style it
continues until that style concludes.

Your initia reaction as you are learning a new language may be to ignore
comments, but they are just as important at the outset as they are later. A
program never gets commented at all unless you do it as you write it, and

Copyright © , 2002 by James W Cooper

42

if you ever want to use that code again, you'll find it very helpful to have
some comments to help you in deciphering what you meant for it to do.
For this reason, many programming instructors refuse to accept programs
that are not thoroughly commented.

The Ornery Ternary Operator

C# has unfortunately inherited one of C/C++ and Java's most opague
constructions, the ternary operator. The statement:

if (a>hb)
zZ = a;
el se
z = b;

can be written extremely compactly as:

z=(a>bh) ?a: b

The reason for the original introduction of this statement into the C
language was, like the post- increment operators, to give hints to the
compiler to allow it to produce more efficient code, and to reduce typing
when terminals were very slow. Today, modern compilers produce
identical code for both forms given above, and the necessity for this
turgidity is long gone. Some C programmers coming to C# find this an
“elegant” abbreviation, but we don’t agree and will not be using it in this
book.

L ooping Statementsin C#

C# has four looping statements: while, do-while, for and foreach. Each of
them provides ways for you to specify that a group of statements should
be executed until some condition is satisfied.

Thewhile Loop

The while loop is easy to understand. All of the statements inside the
braces are executed repeated as long as the condition is true.

i =0;
while (i < 100)

Copyright © , 2002 by James W Cooper

{

X = X + i++
}
Since the loop is executed as long as the condition is true, it is possible

that such aloop may never be executed at all, and of course, if you are not
careful, that such a while loop will never be completed.

The do-while Statement

The C# do-while statement is quite analogous, except that in this case the
loop must always be executed at least once, since the test is at the bottom

of the loop:
i =0;
do {

X += i ++

}
while (i < 100);

Thefor Loop

The for loop is the most structured. It has three parts: an initializer, a
condition, and an operation that takes place each time through the loop.
Each of these sections are separated by semicolons:
for (i = 0; i< 100; i++) {
X += i
}
Let’stake this statement apart:

for (i = 0; /linitialize i to O
i <100 ; //continue as long as i < 100
i ++) /lincrement i after every pass

In the loop above, i starts the first pass through the loop set to zero. A test
is made to make sure that i is less than 100 and then the loop is executed.
After the execution of the loop, the program returns to the top, increments
i and again teststo seeif it isless than 100. If it is, the loop is again
executed.

Copyright © , 2002 by James W Cooper

44

Note that this for loop carries out exactly the same operations as the while
loop illustrated above. It may never be executed and it is possible to write
afor loop that never exits.

Declaring Variables as Needed in For L oops

One very common place to declare variables on the spot is when you need
an iterator variable for afor loop. You can simply declare that variable
right in the for statement, as follows:

for (int i =0; i < 100; i++)

Such aloop variable exists or has scope only within the loop. It vanishes
once the loop is complete. This isimportant because any attempt to
reference such a variable once the loop is complete will lead to a compiler
error message. The following code is incorrect:
for (int i =0; i< 5; i++) {

x[i] =1i;
}

//the following statenent is in error
//because i is now out of scope
Systemout.printIn(“i=" +1i);

Commasin for Loop Statements

Y ou can initialize more than one variable in the initializer section of the
C# for statement, and you can carry out more than one operation in the
operation section of the statement. Y ou separate these statements with

commeas:
for (x=0, y= 0, i =0; i < 100; i++, y +=2)

{

X =i +vy;

} . P .
It has no effect on the loop’s efficiency, and it is far clearer to write:
X = 0;

y =0
for (i =0; i <100; i++)
{

Copyright © , 2002 by James W Cooper

X =i +vy;
y += 2

It is possible to write entire programs inside an overstuffed for statement
using these comma operators, but thisis only away of obfuscating the
intent of your program.

How C# DiffersFrom C

If you have been exposed to C, or if you are an experienced C
programmer, you might be interested in the main differences between C#

and C:
1.

C# does not usualy make use of pointers. You can only increment,
or decrement avariable asif it were an actual memory pointer
inside a specia unsafe block.

Y ou can declare variables anywhere inside a method you want to;
they don’'t have to be at the beginning of the method.

Y ou don’t have to declare an object before you use it; you can
define it just as you need it.

C# has a somewhat different definition of the struct types, and does
not support the idea of aunion at all.

C# has enumerated types, which allow a series of named values,
such as colors or day names, to be assigned sequential numbers, but
the syntax is rather different.

C# does not have hitfields: variables that take up less than a byte of
storage.

C# does not allow variable length argument lists. Y ou have to
define a method for each number and type of argument. However

Copyright © , 2002 by James W Cooper

C# dlows for the last argument of a function to be a variable
parameter array.

Summary

In this brief chapter, we have seen the fundamental syntax elements of the
C# language. Now that we understand the tools, we need to see how to use
them. In the chapters that follow, we'll take up objects and show how to
use them and how powerful they can be.

Copyright © , 2002 by James W Cooper

47

3. Writing Windows C# Programs

The C# language has its roots in C++, Visual Basic and Java. Both C# and
VB.Net utilize the same libraries and compile to the same underlying
code. Both are managed languages with garbage collection of unused
variable space and both can be used interchangeably. Both also use classes
with method names that are very similar to those in Java, so if you are
familiar with Java, you will have no trouble with C#.

Objectsin C#

In C#, everything istreated as an object. Objects contain data and have
methods that operate on them. For example, strings are now objects. They
have methods such as

Substring
ToLower Case
ToUpper Case
| ndexOf

I nsert

and so forth.

Integers, float and double variables are also objects, and have methods.

string s;

float x;

X 12. 3;

S X. ToString();

Note that conversion from numerical types is done using these methods
rather than external functions. If you want to format a number as a
particular kind of string, each numeric type has a Format method.

Copyright © , 2002 by James W Cooper

Managed L anguages and Gar bage Collection

C# and VB.Net are both managed languages. This has two mgjor
implications. First, both are compiled to an intermediate low-level
language, and a common language runtime (CLR) is used to execute this
compiled code, perhaps compiling it further first. So, not only do C# and
VB.Net share the same runtime libraries, they are to a large degree two
sides of the same coin and two aspects of the same language system. The
differences are that VB7 is more Visua Basic like and a bit easier for VB
programmers to learn and use. C# on the other hand is more C++ and
Java-like, and may appeal more to programmers aready experienced in
those languages.

The other mgjor implication is that managed languages are garbage-
collected. Garbage collected languages take care of releasing unused
memory: you never have to be concerned with this. As soon as the garbage
collection system detects that there are no more active references to a
variable, array or object, the memory is released back to the system. So
you no longer need to worry as much about running out of memory
because you allocated memory and never released it. Of course, it is still
possible to write memory-eating code, but for the most part you do not
have to worry about memory allocation and release problems.

Classes and Namespacesin C#

All C# programs are composed entirely of classes. Visua windows forms
are atype of class, aswe will see that al the program features we'll write
are composed of classes. Since everything is a class, the number of names
of class objects can get to be pretty overwhelming. They have therefore
been grouped into various functional libraries that you must specifically
mention in order to use the functions in these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names using the using statement, and
the functions in that library are available to you.

using System

Copyright © , 2002 by James W Cooper

49

usi ng System Dr awi ng;
using System Col | ecti ons;

Logicaly, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names which the
compiler will recognize after you declare that name space. Y ou can use
namespaces that contain identically named classes or methods, but you
will only be notified of a conflict if you try to use a class or method that is
duplicated in more than one namespace.

The most common namespace is the System namespace, and it is imported
by default without your needing to declare it. It contains many of the most
fundamental classes and methods that C# uses for access to basic classes
such as Application, Array, Console, Exceptions, Objects, and standard
objects such as byte, bool, string. In the simplest C# program we can
simply write a message out to the console without ever bringing up a
window or form:
class Hello {

static void Main(string[] args) {

} Consol e. WiteLine ("Hello C# World");

}
This program just writes the text “Hello C# World” to a command (DOS)

window. The entry point of any program must be a Main method, and it
must be declared as static.

Building a C# Application

Let’s start by creating a simple console application: that is, one without
any windows, that just runs from the command line. Start the Visual
Studio.NET program, and select File [New Project. From the selection
box, choose C# Console application as shown in Figure 3-1.

Copyright © , 2002 by James W Cooper

Rewpeatect |
Bruject Types: Tempistes: |ﬁ§_|
=] Veud Bemic Frojecks
-4 Ueua C# Projacds ﬁ‘ 3! hE
~] Vsud T4+ Bropscs -I_- 'g—'
- Set d Dlsphoryment: Projsct ASDNET iwiah ASPLRET Wb ‘wiab Coniral
-5 Dﬂ::‘ﬂr:bs e Foplcaton Serace Ubrary
== Viud Studio Soltiors —_—
R e @

L Whndiks Emply Profact
Fopbcgon Sernce -

A prolect For ereating 2 connancHng sppication

Mare: {Heln1
Locacon: |E:'pu:mwrm.|_-;lurpﬁuﬂmumof_1'mp ﬂ Erowes, .,
™ Bl bo Sohton % Cose Soluton
Propect ail Ee created of CilDoouments|osharplPrograms | Inbra CShar piHedlo
St EE -

Figure 3-1 - The New Project selection window. Selecting a console application.

Thiswill bring up a module, with Main already filled in. You can typein
the rest of the code as follows:

Consol e. WiteLine ("Hello C# World");

Y ou can compile this and run it by pressing F5.

When you compile and run the program by pressing F5, a DOS window
will appear and print out the message “Hello C# World” and exit.

The Smplest Window Program in C#

C# makes it very easy to create Windows GUI programs. In fact, you can
create most of it using the Windows Designer. To do this, start Visual
Sudio.NET and select File]New project, and select C# Windows
Application. The default name (and filename) is WindowsA pplicationl,
but you can change this before you close the New dialog box. This brings
up asingle form project, initially called Forml.cs. Y oucan then use the
Toolbox to insert controls, just as you can in Visua Basic.

Copyright © , 2002 by James W Cooper

51

The Windows Designer for a simple form with one text field and one
button is shown in Figure 3-2.

e g B meT B D) O R [RK BOe DO
H-o-sad " F Y T L Sme -

& iriikd
il B
R
& Harttan,
L
F Falaukn
" Gwohn
i P
L] Barad
T Cadaird
2 Inibn
2.3 Chah sl i
f Cominitin
B e
i Wi
L] ki
W e
TR Frvh iy
u 8 T
2 watm
f= R
i b
T [owam pices
[= oyt [[o
B i
vy

Figure 3-2 — The Windows designer in Visual Studio.NET

Y ou can draw the controls on the form by selecting the TextBox from the
Toolbox and dragging it onto the form, and then doing the same with the
button. Then to create program code, we need only double click on the
controls. In this simple form, we want to click on the “Hello” button and
it copies the text from the text field to the textbox we called txHi, and
clearsthe text field. So, in the designer, we double click on that button and
the code below is automatically generated:

private void btHello_Click(object sender, EventArgs e) {
;xHi .Text ="Hello there";

Note that the Click routine passes in a sender object and an event object
that you can query for further information. Under the covers, it also
connects the event to this method. The running program is shown in
Figure 3-3.

Copyright © , 2002 by James W Cooper

52
=T
IHeIIo there

Figure3-3 — The SimpleHello form after clicking the Say Hello button.

While we only had to write one line of code inside the above subroutine, it
isinstructive to see how different the rest of the code is for this program.
We first see that severa libraries of classes are imported so the program
can use them:

using System

usi ng System Dr awi ng;

usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System W ndows. For ns;
usi ng Syst em Dat a;

Most significant is the Windows.Forms library, which is common to all
the .Net languages.

The code the designer generates for the controlsisilluminating. And it is
right there in the open for you to change if you want. Essentially, each
control is declared as a variable and added to a container. Here are the
control declarations. Note the event handler added to the btHello.Click
event.

private System W ndows. Forms. Text Box t xHi;
private System W ndows. Fornms. Button bt Hel | o;

private void InitializeConponent() {
this.btHello = new System W ndows. Forns. Button();
this.txH = new System W ndows. For nms. Text Box() ;

Copyright © , 2002 by James W Cooper

112);

t hi s. SuspendLayout () ;

/1

/1 btHello

/1

this.btHello.Location = new System Draw ng. Poi nt (80,
this.btHello.Name = "btHello";

this.btHello.Size = new System Drawi ng. Si ze(64, 24);
this.btHello. Tabl ndex = 1;

this.btHello. Text = "Hello";

this.btHello.Cick += new

Event Handl er (t hi s. bt Hel | o_Cl i ck);

48) ;

13);

/1

/1 txHi

/1

this.txH .Location = new System Draw ng. Poi nt (64,

this.txHi . Nane "txH";

this.txHi.Size new System Draw ng. Si ze(104, 20);
this.txHi . Tabl ndex = 0;

this.txH . Text = "";

/1

/1 Forml

/1

t hi s. Aut oScal eBaseSi ze = new System Draw ng. Si ze(5,

this.dientSize = new System Draw ng. Si ze(240, 213);
thi s. Controls. AddRange(
new System W ndows. Forms. Control [] {
this.btHell o,

this.txHi });

this. Name = "Forml";
this.Text = "Hell o w ndow';
t hi s. ResuneLayout (fal se);

}

If you change this code manually instead of using the property page, the
window designer may not work any more. We'll look more at the power
of this system after we discuss objects and classes in the following
chapter.

Copyright © , 2002 by James W Cooper

Windows Controls

All of the basic Windows controls work in much the same way as the
TextBox and Button we have used so far. Many of the more common ones
are shown in the Windows Controls program in Figure 3-4.

il
File
IGTEE“”QS Push here I
Greetings
¥ Eold
12 -
Greetings [~ Grouping
Greetings 12
? £ Black
& Green
" Red

Figure 3-4 — A selection of basic Windows contrals.

Each of these controls has properties such as Name, Text, Font, Forecolor
and Borderstyle that you can change most conveniently using the
properties window shown at the right of Figure 3-2. Y ou can also change
these properties in your program code as well. The Windows Form class
that the designer generates always creates a Form1 constructor that calls
an InitializeComponent method like the one above. One that method has
been called, the rest of the controls have been created and you can change
their properties in code. Generally, we will create a private init() method
that is called right after the InitializeComponent method, in which we add
any such additional initialization code.

Copyright © , 2002 by James W Cooper

Labels

A label isafield on the window form that ssimply displays text. Usualy
programmers use this to label the purpose of text boxes next to them. Y ou
can't click on alabd or tab to it so it obtains the focus. However, if you
want, you can change the major propertiesin Table 3-1 either in the
designer or at runtime.

Property Value

Name At design time only

BackCol or A Color object

Border Styl e [None, FixedSingle or Fixed3D

Enabl ed true or false. If false, grayed out.

Font Set to a new Font object

For eCol or A Color object

| mge An image to be displayed within the label
I mageAl i gn | Wherein the labd to place the image
Text Text of the label

Vi si bl e true or false

Table 3-1 —Propertiesfor the Label Control

TextBox

The TextBox isasingle line or multiline editable control. You can set or
get the contents of that box using its Text property:

Text Box tbox = new Text Box();

t box. Text = "Hello there";

In addition to the propertiesin Table 3-1, the TextBox also supports the
propertiesin Table 3-2.

Property Value
Li nes An array of strings, one per line
Locked If true, you can’t type into the text box
Mil tiline true or false
ReadOnl y Same as locked. If true, you can till
select the text and copy it, or set values

Copyright © , 2002 by James W Cooper

from within code.

Wor dW ap true or false

Table 3-2 — TextBox properties

CheckBox

A CheckBox can either be checked or not, depending on the value of the
Checked property. You can set or interrogate this property in code as well
asin the designer. Y ou can create an event handler to catch the event
when the box is checked or unchecked, by double clicking on the
checkbox in the design mode.

CheckBoxes have a Appearance property which can be set to
Appearance.Normal or Appearance.Button. When the appearance is set to
the Button value, the control appears acts like a toggle button that stays
depressed when you click onit and becomes raised when you click on it
again. All the propertiesin Table 3-1 apply as well.

Buttons

A Button is usually used to send a command to a program. When you

click on it, it causes an event that you usualy catch with an event handler.
Like the CheckBox, you create this event handler by double clicking on
the button in the designer. All of the propertiesin Table 3-1 can be used as
well.

Buttons are also frequently shown with images on them. Y ou can set the
button image in the designer or at run time. The images can be in bmp, gif,
jpeg or icon files.

Radio buttons

Radio buttons or option buttons are round buttons that can be selected by
clicking on them. Only one of a group of radio buttons can be selected at a
time. If there is more than one group of radio buttons on a window form,
you should put each set of buttons inside a Group box as we did in the
program in Figure 3-1. As with checkboxes and buttons, you can attach

Copyright © , 2002 by James W Cooper

57

events to clicking on these buttons by double clicking on them in the
designer. Radio buttons do not always have events associated with them.
Instead, programmers check the Checked property of radio buttons when
some other event, like an OK button click occurs.

Listboxes and Combo Boxes

Both list boxes and Combo boxes contain an Items array of the elements
in that list. A ComboBox is a single line drop-down, that programmers use
to save space when selections are changed less frequently. ListBoxes
allow you to ser properties that allow multiple selections, but
ComboBoxes do not. Some of their properties include those in Table 3-3.

Property Value
Items A collection of itemsin the list
MultiColumn If true, the ColumnWidth property
describes the width of each column.
SelectionMode One, MultiSimple or MultiExtended. If

set to MultiSimple, you can select or
deselect multiple items with a mouse
click. If set to MultiExtended, you can
select groups of adjacent items with a

mouse.

Sel ectedl ndex Index of sdlected item

SelectedIndices Returns collection of selections when
list box selection mode is multiple.

Selecteditem Returns the item selected

Table3-3-The ListBox and ComboBox properties. SelectionMode and
MultiColumn do not apply to combo boxes.

The Items Collection

Y ou use the Items collection in the ListBox and ComboBox to add and
remove elements in the displayed list. It is essentialy an ArrayList, aswe
discuss in Chapter 8. The basic methods are shown in Table 3-4.

Method Value

Copyright © , 2002 by James W Cooper

Add Add object to list
Count Number in list

Item[i] Element in collection
RemoveAt(i) Remove element i

Table3-4 — Methods for the Items Collection

If you set a ListBox to a multiple selection mode, you can obtain a
collection of the selected items or the selected indexes by
Li st Box. Sel ect edl ndexCol | ection it =

new Li st Box. Sel ect edl ndexCol | ecti on (I sCommands) ;

Li st Box. Sel ect edObj ect Col | ecti on so =
new Li st Box. Sel ect edCbj ect Col | ecti on (| sConmands) ;

where IsCommands is the list box name.

Menus

Y ou add menus to awindow by adding a MainMenu controls to the
window form. Then, you can the menu control and edit its drop-down
names and new main item entries as you see in Figure 3-5.

[_TypeHere |

Figure 3-5- Adding a menu to a form.

Aswith other clickable controls, double clicking on one in the designer
creates an event whose code you can fill in.

ToolTips

A ToolTip is abox that appears when your mouse pointer hovers over a
control in awindow. This feature is activated by adding an (invisible)
Tool Tip control to the form, and then adding specific tool tips control and

Copyright © , 2002 by James W Cooper

59

text combinations to the control. In our example in Figure 3-4, we add
tooltips text to the button and list box using the tips control we have added
to the window.

tips.SetTool Tip (btPush, "Press to add text to list box");
tips.SetTool Tip (I sComands, "Click to copy to text box");

Thisisillustrated in Figure 3-6.

Puzh here |

|F‘ress ko add bext o lisk I:u:ux|
[Bald |

Greelings

Figure3-6 — A ToolTip over a button.

Other Windows Controls

We discuss how to use the Datagrid and TreeList in the Adapter and
Bridge pattern chapters, and the Toolbar in the State and Strategey pattern
chapters.

The Windows Controls Program

This program, shown in Figure 3-4, has the following features. The text in
the label changes whenever you change the

Font size from the combo box
Font color from the radio buttons

Font bold from the check box.

For the check box, we create a new font which is either bold or not

depending on the state of the check box:

private void ckBol d_CheckedChanged(obj ect sender, EventArgs e) {
if (ckBol d. Checked) {

| bText. Font =new Font ("Arial",
fontSi ze, Font Style. Bold);

Copyright © , 2002 by James W Cooper

el se {
| bText. Font = new Font ("Arial", fontSize);
}

}
When we create the form, we add the list of font sizes to the combo box:

private void init() {
fontSize = 12;

cbFont.Itenms. Add ("8");
cbFont.Itens. Add ("10")
cbFont.Itens. Add ("12")
cbFont.Itens. Add ("14");
cbFont.Itens. Add ("18");

| bText. Text ="Greetings";
tips. Set Tool Tip (btPush, "Press to add text to list box");
tips.SetTool Tip (I sComrands, "Click to copy to text box");

}

When someone clicks on a font size in the combo box, we convert that
text to a number and create afont of that size. Note that we just call the
check box changing code so we don’'t have to duplicate anything.
private void cbFont_Sel ect edl ndexChanged(

obj ect sender, EventArgs e) {

fontSi ze= Convert. Tolnt16 (chFont. Sel ectedltem);
ckBol d_CheckedChanged(nul |, null);

}
For each radio button, we click on it and insert color-changing code:

private void opG een_CheckedChanged(obj ect sender, EventArgs e) {
| bText . For eCol or =Col or. G een;
}

private void opRed_CheckedChanged(object sender, EventArgs e) {
| bText . ForeCol or =Col or. Red ;
}

private void opBl ack_CheckedChanged(obj ect sender, EventArgs e) {
| bText . ForeCol or =Col or. Bl ack ;
}

When you click on the ListBox, it copies that text into the text box, by
getting the selected item as an object and converting it to a string.

Copyright © , 2002 by James W Cooper

61

private void | sCommands_Sel ect edl ndexChanged(
obj ect sender, EventArgs e) {
t xBox. Text = | sCommands. Sel ectedltem ToString () ;

}

Finally, when you click on the File | Exit menu item, it closes the form,

and hence the program:

private void nmenulten2_Click(object sender, EventArgs e) {

this.ose ();
}

Summary

Now thet we' ve seen the basics of how you write programs in C#, we are
ready to talk more about objects and OO programming in the chapters that

follow.

Programs on the CD-ROM

Console Hello

\'I ntroCSharp\Hell o

Windows hdllo

\'I nt r oCShar p\ SayHel | o

Windows controls

\'I ntroCShar p\ WnControl s

Copyright © , 2002 by James W Cooper

62

4. Using Classes and Objects in C#

What Do We Use Classes For ?

All C# programs are composed of classes. The Windows forms we have
just seen are classes, derived from the basic Form class and all the other
programs we will be writing are made up exclusively of classes. C# does
not have the concept of global data modules or shared data that is not part
of classes.

Simply put, aclassisaset of public and private methods and private data
grouped inside named logical units. Usualy, we write each classin a
separate file, although thisis not a hard and fast rule. We have aready
seen that these Windows forms are classes, and we will see how we can
create other useful classesin this chapter.

When you create a class, it is not a single entity, but a master you can
create copies or instances of, using the new keyword. When we create
these instances, we pass some initializing datainto the class using its
constructor. A constructor is amethod that has the same name as the class
name, has no return type and can have zero or more parameters that get
passed into each instance of the class. We refer to each of these instances
asobjects.

In the sections that follow we'll create some simple programs and use
some instances of classes to simplify them.

A Simple Temperature Conversion Program

Suppose we wanted to write a visual program to convert temperatures
between the Celsius and Fahrenheit temperature scales. Y ou may
remember that water freezes at zero on the Celsius scale and boils at 100
degrees, while on the Fahrenheit scale, water freezes at 32 and boils at
212. From these numbers you can quickly deduce the conversion formula
that you may have forgotten.

Copyright © , 2002 by James W Cooper

The difference between freezing and boiling on once scale is 100 and on
the other 180 degrees or 100/180 or 5/9. The Fahrenheit scale is “ offset”
by 32, since water freezes at 32 on its scale. Thus,

C=(F-32)*5/9
and
F=9/5*C+ 32

In our visua program, we'll allow the user to enter a temperature and
select the scale to convert it to as we see in Figure 4-1.

in. Convert temperatures -10] x|
Enter temperature l35

= Select conversion
" to Celsiuz

* to Fahrenheit
Converted
temperature I i
Cloze |

Figure4-1—- Converting 35 Celsius to 95 Fahrenheit with our visual interface.

Using the visual builder provided in Visual Studio.NET, we can draw the
user interface in a few seconds and simply implement routines to be called
when the two buttons are pressed. If we double click on the Convert
button, the program generates the btConvert_Click method. Y ou can fill it
in to have it convert the values between temperature scales:
private void bt Conpute_Cick(object sender,

System Event Args e) {

float tenp, newTenp;
/I convert string to input val ue

Copyright © , 2002 by James W Cooper

tenmp = Convert.ToSingle (txEntry. Text);
//see which scale to convert to
i f (opFahr. Checked)
newlTenp = 9*tenp/5 + 32;
el se
newTenp = 5*(tenp-32)/9;
/lput result in |abel text
| bResul t. Text =newTenp. ToString ();
txEntry. Text =""; /lclear entry field

}

The above program is extremely straightforward and easy to understand,
and istypical of how some simple C# programs operate. However, it has
some disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data
handling are combined in a single program module, rather than being
handled separately. It is usually a good idea to keep the data manipulation
and the interface manipulation separate so that changing interface logic
doesn’t impact the computation logic and vice-versa.

Building a Temper ature Class

A classin C# isamodule that can contain both public and private
functions and subroutines, and can hold private data values as well. These
functions and subroutines in a class are frequently referred to collectively
as methods.

Class modules alow you to keep a set of data valuesin a single named
place and fetch those values using get and set functions, which we then
refer to as accessor methods.

Y ou create a class module from the C# integrated devel opment
environment (IDE) using the menu item Project | Add class module. When
you specify afilename for each new class, the IDE assigns this name as
the class name as well and generates an empty class with an empty
constructor. For example, if we wanted to create a Temperature class, the
IDE would generate the following code for us:

Copyright © , 2002 by James W Cooper

nanespace Cal cTenp

{
/1] <summary>
/1] Summary description for Tenperatur.
/1] <l summary>
public class Tenperature
{
public Tenperature()
{
I
/1 TODO Add constructor |ogic here
I
}
}
}

If you fill in the “summary description” special comment, that text will
appear whenever your mouse hovers over an instance of that class. Note
that the system generates the class and a blank constructor. If your class
needs a constructor with parameters, you can just edit the code.

Now, what we want to do is with this classis to move all of the
computation and conversion between temperature scales into this new
Temperature class. One way to design this classis to rewrite the calling
programs that will use the class module first. In the code sample below,
we create an instance of the Temperature class and use it to do whatever
conversions are needed:
private void bt Conmpute_Click(object sender, System EventArgs e) {

string newTenp;

/luse input value to create instance of class

Tenperature tenp = new Tenperature (txEntry. Text);

//use radio button to decide which conversion
newTenp = tenp. get ConvTenp (opCel s. Checked);

//get result and put in |abel text

| bResul t. Text =newTenp. ToString ();

txEntry. Text =""; /lclear entry field
}

The actual classis shown below. Note that we put the string value of the
input temperature into the class in the constructor, and that inside the class
it gets converted to afloat. We do not need to know how the data are

Copyright © , 2002 by James W Cooper

66

represented internally, and we could change that internal representation at

any time.

public class Tenperature {
private float tenp, newTenp;
I
/'l constructor for class
public Tenperature(string thisTenp)
tenp = Convert. ToSi ngl e(thi sTenp);

public string get ConvTenp(bool celsius){
if (celsius)

return getCel s();
el se

return getFahr();

private string getCels() {
newTenp= 5*(tenp- 32)/9;
return newTenp. ToString() ;

private string getFahr() {
newlTenp = 9*tenp/5 + 32;
return Convert. ToString(newTenp) ;
}
}

Note that the temperature variable temp is declared as private, so it cannot

be “seen” or accessed from outside the class. Y ou can only put data into
the class and get it back out using the constructor and the getConvTemp

method. The main point to this code rearrangement is that the outer calling
program does not have to know how the data are stored and how they are

retrieved: that is only known inside the class.

The other important feature of the classis that it actually holds data. You

can put data into it and it will return it at any later time. This class only
holds the one temperature value, but classes can contain quite complex

sets of data values.

Copyright © , 2002 by James W Cooper

67

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything
about how the data are stored, or how the conversions are performed

Converting to Kelvin

Absolute zero on the Celsius scale is defined as —273.16 degrees. Thisis
the coldest possible temperature, since it is the point at which dl
molecular motion stops. The Kelvin scale is based on absolute zero, but
the degrees are the same size as Celsius degrees. We can add a function

public string getKelvin() {
newTenp = Convert.ToString (getCels() + 273.16)

}
What would the setK elvin method look like?

Putting the Decisionsinto the Temperature Class

Now we are still making decisions within the user interface about which
methods of the temperature class. It would be even better if all that
complexity could disappear into the Temperature class. It would be nice if
we just could write our Conversion button click method as
private void bt Conpute_Click(object sender, System EventArgs e) {

Tenperature tenper =

new Tenperature(txEntry. Text , opCel s. Checked);
//put result in |abel text

| bResul t. Text = tenper. get ConvTenp();
txEntry. Text =""; /lclear entry field

}
This removes the decision making process to the temperature class and
reduces the calling interface program to just two lines of code.

The class that handles al this becomes somewhat nore complex, however,
but it then keeps track of what data as been passed in and what conversion
must be done. We pass in the data and the state of the radio button in the
constructor:

public Tenperature(string sTenp, bool toCels) {
tenp = Convert.ToSingle (sTenp);
cel sius = toCels;

Copyright © , 2002 by James W Cooper

}

Now, the celsius boolean tells the class whether to convert or not and
whether conversion is required on fetching the temperature value. The
output routine is smply
public string get ConvTenp() {
if (celsius)
return getCel s();

el se
return getFahr();

private string getCel s() {
newlTenp= 5*(tenp- 32)/9;
return newTenp. ToString() ;

private string getFahr() {
newTenp = 9*tenp/5 + 32;
return Convert. ToString(newlTenp) ;

}
In this class we have both public and private methods. The public ones are

callable from other modules, such as the user interface form module. The
private ones, getCels and getFahr, are used internally and operate on the
temperature variable.

Note that we now aso have the opportunity to return the output
temperature as either a string or a single floating point value, and could
thus vary the output format as needed.

Using Classesfor Format and Value Conversion

It is convenient in many cases to have a method for converting between
formats and representations of data. Y ou can use a class to handle and hide
the details of such conversions. For example, you might design a program
where you can enter an elapsed time in minutes and seconds with or
without the colon:

315. 20
3:15. 20

Copyright © , 2002 by James W Cooper

69

315.2

and so forth. Since al styles are likely, you'd like a class to parse the legal
possibilities and keep the datain a standard format within. Figure 4-2
shows how the entries “112" and “102.3" are parsed.

im, Enter times

Enter time |-| 023 Enter

P
P2
[
oo

Figure4-2 — A simple parsing program that usesthe Times class.

Much of the parsing work takes place in the constructor for the class.
Parsing depends primarily on looking for a colon. If there is no colon, then
values greater than 99 are treated as minutes.

public Format Ti me(string entry) {
errflag = fal se;
if (! testCharVals(entry)) {
int i = entry.lndexOh (":");
if (i >=0) {
mns = Convert.Tolnt32 (entry. Substring (O, i
secs = Convert.ToSingle (entry. Substring (i+1
if(secs >= 60.0F) {
errflag = true;
t = NT;

)
)

}

t = mns *100 + secs;
el se {

float fmns = Convert.ToSingle (entry) / 100;
mns = (int)fmns;

Copyright © , 2002 by James W Cooper

70

secs = Convert.ToSingle (entry) - 100 * m ns;
if (secs >= 60) {

errflag = true;

t = NT;
}

el se
t = Convert.ToSingle(entry);

}

Sinceillegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might
also have some non-numeric entries such as NT for no time or in the case
of athletic times, SC for scratch or DQ for disqualified. All of these are
best managed inside the class. Thus, you never need to know what
numeric representations of these values are used internally.

static public int NT = 10000;
static public int DQ = 20000;

Some of these are processed in the code represented by Figure 4-3.

i, Enter times
Enter time i” Enter
SCR
B]n]
MNT

Copyright © , 2002 by James W Cooper

71

Figure4-3 - Thetimeentry interface, showing the parsing of symbolsfor Scratch,
Disqualification and No Time.

Handling Unreasonable Values

A classis aso agood place to encapsulate error handling. For example, it
might be that times greater than some threshold value are unlikely and
might actually be times that were entered without a decimal point. If large
times are unlikely, then a number such as 123473 could be assumed to be

12:34.73"
public void setSingle(float tm {
t =tm
if((tm> mnVal) && (tm< NT)) {

t = tm/ 100.Of;

}
}

The cutoff value minVa may vary with the domain of times being
considered and thus should be a variable. Y ou can also use the class
constructor to set up default values for variables.
public class FormatTi ne {
public Format Ti ne(string entry) {
errflag = fal se;
m nVal = 1000;
t = 0;

A String Tokenizer Class

A number of languages provide a smple method for taking strings apart
into tokens, separated by a specified character. While C# does not exactly
provide a class for this feature, we can write one quite easily using the
Split method of the string class. The goal of the Tokenizer class will be to
pass in a string and obtain the successive string tokens back one at atime.
For example, if we had the smple string

Now is the tine
our tokenizer should return four tokens;

Now

Copyright © , 2002 by James W Cooper

72

is
t he
time

The critical part of this classisthat it holds the initial string and
remembers which token is to be returned next.

We use the Split function, which approximates the Tokenizer but returns
an array of substrings instead of having an object interface. The classwe
want to write will have a nextToken method that returns string tokens or a
zero length string when we reach the end of the series of tokens.

The whole class is shown below.

/1String Tokenizer class

public class StringTokenizer {
private string data, delimter;
private string[] tokens; //token array

private int index; //index to next token
[]-=-----ne--
public StringTokeni zer(string dataLine) {
init(dataLine, " ");
}
[]--eemmeam

/lsets up initial values and splits string

private void init(String dataLine, string delim {
delimter = delim
data = dat aLi ne
tokens = data.Split (delimter. ToCharArray());
index = 0;

public StringTokenizer(string dataLine, string delin) {
i nit(dataLine, delin;

public bool hashoreEl ements() {
return (index < (tokens.Length));

public string nextElenment() {
/1 get the next token
if(index < tokens.Length)
return tokens[index++];

Copyright © , 2002 by James W Cooper

73

el se

}

return ""; //or none

The classisillustrated in use in Figure 4-4.

iwi. Shiow tokenizer

Enter string ta tokenize

MHow iz the time for all good BEM=

R[]
is

the
time
far

all
good
BEM=

gTokenEeg

Figure 4-4— Thetokenizer in use.

The code that uses the Tokenizer classisjust:

//call tokenizer when button is clicked
private void bt Token_C i ck(object sender,
System Event Args e) {
StringTokeni zer tok =
new StringTokeni zer (txEntry. Text);
whi | e(t ok. hasMor eEl enents ()) {
| sTokens. Itens. Add (tok.nnextEl ement());
}

Classesas Objects
The primary difference between ordinary procedural programming ard
object-oriented (OO) programming is the presence of classes. A classis
just a module as we have shown above, which has both public and private
methods and which can contain data. However, classes are also uniquein
that there can be any number of instances of a class, each containing

Copyright © , 2002 by James W Cooper

74

different data. We frequently refer to these instances as objects. We'll see
some examples of single and multiple instances below.

Suppose as have afile of results from a swimming event stored in atext
data file. Such afile might look, in part, like this:

1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn M1l er 16 Ww 5:01. 35
3 Melissa Sckol nik 17 WwW 5:01. 58
4 Sarah Bowmran 16 CDEV 5:02. 44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Heal ey 16 MBM 5:03.62

where the columns represent place, names, age, club and time. If we wrote
a program to display these swimmers and their times, we'd need to read in
and parse thisfile. For each swimmer, we' d have a first and last name, an
age, aclub and atime. An efficient way to keep the data for each swimmer
grouped together is to design a Swimmer class and create an instance for
each swimmer.

Here is how we read the file and create these instances. As each instance is
created we add it into an ArrayList object:

private void init() {

ar = new ArraylList (); /lcreate array |ist
csFile fl = newcsFile ("500free.txt");
/lread in |liens

string s = fl.readLine ();

while (s !'= null) {
//convert to tokens in swi mer object
Swi mer swm = new Swi nmer (S);
ar. Add (swm;
s= fl.readLine ();

fl.close();
//add nanes to |ist box
for(int i=0; i < ar.Count ; i++) {
Swi nrer swm = (Swinmer)ar[i];
| sSwi nmrers. I tens. Add (swm get Nane ());

Copyright © , 2002 by James W Cooper

75

The Swimmer class itself parses each line of data from the file and stores
it for retrieval using getX XX accessor functions:
public class Swi mer {

private string frName, | Nane;

private string cl ub;

private int age;

private int place;

private FormatTine tnmns;

public Swimrer(String dataLine) {
StringTokeni zer tok = new StringTokeni zer (dataline);
place = Convert. Tol nt32 (tok.nextEl ement());
frNane = tok.nextEl enent ();
| Name = tok. nextEl enent ();
string s = tok.nextEl ement ();
age = Convert. Tolnt32 (s);
club = tok.nextEl ement ();
tms = new Format Ti me (tok. nextEl enent ());

public string getNane() {
return frName+" "+ Nane;

public string getTime() {
return tns.getTinme();
}

}

Class Containment

Each instance of the Swimmer class contains an instance of the
StringTokenizer class that it uses to parse the input string and an instance
of the Times class we wrote above to parse the time and return it in
formatted form to the calling program. Having a class contain other
classesis avery common ploy in OO programming and is one of the main
ways we can build up more complicated programs from rather simple
components.

The program that displays these swimmersis shown in Figure 4-5.

Copyright © , 2002 by James W Cooper

76

Siimmers
Erily Fern - Swimmer's time:
K.athryn Miller
Melizza Sckalnik X
Sarah Bowman 15'03'52
Caitlin Flick.
Caitlin Heale

Kim Richardzon
Beth Malinoweski
Patricia Finnerty

Carolyn Bowman

K.atie Martin

Lauren Dudley _ﬂ

Figure4-5—A list of swimmersand their times, using containment.

When you click on any swimmer, her time is shown in the box on the
right. The code for showing that time is extremely easy to write since al
the data are in the swimmer class:

private void | sSw mers_Sel ect edl ndexChanged(
obj ect sender, System EventArgs e) {
/1 get index of selected sw nmmrer
int i = 1sSw nmmers. Sel ect edl ndex ;
/1 get that sw mrer
Swi nrer swm = (Swimmrer)ar[i];
/1 display her tine
txTi me. Text =swm getTime ();

}
I nitialization
In our Swimmer class above, note that the constructor in turn calls the

constructor of the StringTokenizer class:

public Swi mrer (String dataline) {
StringTokeni zer tok =
new StringTokeni zer (datalLine);

Copyright © , 2002 by James W Cooper

Classes and Properties

Classes in C# can have Property methods as well as public and private
functions and subs. These correspond to the kinds of propertiesyou
associate with Forms, but they can store and fetch any kinds of values you
care to use. For example, rather than having methods called getAge and
setAge, you could have a single age property which then corresponds to a
get and a set method:
private int Age;
/1 age property
public int age {

get {

return Age;

set {
Age = val ue;
}

}
Note that a property declaration does not contain parentheses after the

property name, and that the special keyword value is used to obtain the
data to be stored.

To use these properties, you refer to the age property on the left side of an
equals sign to set the value, and refer to the age property on the right side

to get the value back.
age = sw. Age; /1 Get this swimer’s age
sw. Age = 12; /1 Set a new age for this sw mer

Properties are somewhat vestigial, since they originally applied more to
Formsin the Vb language, but many programmers find them quite useful.
They do not provide any features not already available using get and set
methods and both generate equally efficient code.

In the revised version of our SwimmerTimes display program, we convert
all of the get and set methods to properties, and then allow usersto vary
the times of each swimmer by typing in new ones. Here is the Swimmer
class

Copyright © , 2002 by James W Cooper

public
{

78

cl ass Swi nmer

private string frNane, | Nane;
private string cl ub;

private int Age;

private int place;

private FornmatTi ne tns;

R
public Swi mer (String dataline)
StringTokeni zer tok = new StringTokeni zer (dataline);
pl ace = Convert. Tolnt32 (tok.nextEl enent());
frNane = tok.nextEl enent ();
I Name = tok. nextEl enent ();
string s = tok.nextEl ement ();
Age = Convert.Tolnt32 (s);
club = tok.nextEl ement ();
tms = new Format Ti me (tok. nextEl enent ());
}
N
public string nane {
get {
return frName+" "+ Nane;
}
}
R
public string tinme {
get {
return tns.getTinme();
}
set {
tms = new Format Ti me (val ue);
}
}
I R TR
/l age property
public int age {
get {
return Age;
}
set {
Age = val ue;
}
}
}
}

Copyright © , 2002 by James W Cooper

79

Then we can type a new time in for any swimmer, and when the txTime
text entry field loses focus, we can store a new time as follows:
private void txTi me_OnLost Focus(

obj ect sender, System EventArgs e) {

/1 get index of selected swi nmer

int i = 1sSw mmers. Sel ect edl ndex ;

/1 get that sw nmer

Swi nmmrer swm = (Swimmer)ar[i];

swmtine =txTinme. Text ;

}

Programming Stylein C#
Y ou can develop any of a number of readable programming styles for C#.
The one we use here is partly influenced by Microsoft’s Hungarian
notation (named after its originator, Charles Simonyi) and partly on styles
developed for Java.

We favor using names for C# controls such as buttons and list boxes that
have prefixes that make their purpose clear, and will use them whenever
there is more than one of them on a single form:

Control name Prefix Example
Buttons bt btCompute
List boxes Is IsSwimmers
Radio (option buttons) op opFSex
Combo boxes cb cbCountry
Menus mnu mnuFile
Text boxes tx txTime

We will not generally create new names for labels, frames and forms when
they are never referred to directly in the code. We will begin class names
with capital letters and instances of classes with lowercase letters. We will
also spell instances and classes with a mixture of lowercase and capital
letters to make their purpose clearer:

swi mer Ti ne

Copyright © , 2002 by James W Cooper

Summary

In this chapter, we' ve introduced C# classes and shown how they can
contain public and private methods and can contain data. Each class can
have many instances and each could contain different data values. Classes
can also have Property methods for setting and fetching data. These
Property methods provide a smpler syntax over the usua getXXX and
setX X accessor methods but have no other substantial advantages.m

Programs on the CD-ROM

Termperature conversion \ Usi ngCl asses\ Cal cTenp
Temperature conversion using classes \ Usi ngCl asses\ Cl sCal cTenp
Temperature conversion using classes \ Usi ngCl asses\ Al | Cl sCal cTenp
Time conversion \ Usi ngCl asses\ For mat val ue
String tokenizer \ Usi ngCl asses\ TokenDeno
Swimmer times \ Usi ngCl asses\ Swi nmer Tokeni zer

Copyright © , 2002 by James W Cooper

81

5. Inheritance

Now we will take up the most important feature of OO languages like C#
(and VB.NET): inheritance. When we create a Windows form, such as our
Hello form, the IDE (VS.NET Integrated Development Environment)
creates a declaration of the following type:

public class Forml : System W ndows. For ns. Form

This says that the form we create is a child class of the Form class, rather
than being an instance of it. This has some very powerful implications.

Y ou can create visual objects and override some of their properties so that
each behaves a little differently. We'll see some examples of this below.

Constructors

All classes have specific constructors that are called when you create an
instance of a class. These constructors always have the same name as the
class. This applies to form classes as well as nonvisual classes. Here is
the constructor the system generates for our simple hello window in the
class Form1:

public class Forml {

public Forml(){ // constructor
InitializeConponent();
}

When you create your own classes, you must create constructor methods
to initialize them, and can pass arguments into the class to initialize class
parameters to specific values. If you do not specifically include a
constructor in any class you write, a constructor having no arguments is
generated for you under the covers.

The InitializeComponent method is generated by the IDE as well, and
contains code that creates and positions all the visual controlsin that
window. If we need to set up additional code as part of the initialization of

Copyright © , 2002 by James W Cooper

82

a Form class, we will always write a private init method that we call after
the InitializeComponent method call.
public Forml(){
InitializeConponent();
init();
}

private void init() {
x = 12.5f; //set initial value of x
}

Drawing and Graphicsin C#

In out first example, we'll write a program to draw arectanglein a
PictureBox on aform. In C#, controls are repainted by the Windows
system and you can connect to the paint event to do your own drawing
whenever apaint event occurs. Such a paint event occurs whenever the
window is resize, uncovered or refreshed. To illustrate this, we'll create a
Form containing a PictureBox, as shown in Figure 5-1.

I — =

Copyright © , 2002 by James W Cooper

Figure5-1 - Inserting a PictureBox on a Form

Then, we'll select the PictureBox in the designer, and select the Events
button (with the lightning icon) in the Properties window. This brings up a
list of al the events that can occur on a PictureBox as shown in Figure

Praperties

Ipic System, Windows,Forms. PictureBox ;l
A E =N =

Mouseleave

MouseMove

Mouselp
Mowe

£
|
|
|
|
|
5l |
ParentChanged _l
CueryAccessibilicyH !

|

CueryContinuelrag
Resize

Figure5-2 — Selecting the Paint Event for the PictureBox window.

Double clicking on the Paint event creates the following empty method in
the Form’s code:
private void pic_Paint(object sender, PaintEventArgs e) {

}
It also generates code that connects this method to the Paint event for that

picture box, inside the InitializeComponents method.

this. pic.Paint += new Pai nt Event Handl er (thi s. pi c_Paint);

The PaintEventArgs object is passed into the subroutine by the underlying
system, and you can obtain the graphics surface to draw on from that
object. To do drawing, you must create an instance of a Pen object and
define its color and, optionally its width. Thisisillustrated below for a
black pen with a default width of 1.

Copyright © , 2002 by James W Cooper

private void pic_Paint(object sender, PaintEventArgs e) {

Graphics g = e. Graphics; /1 get Graphics surface
Pen rpen = new Pen(Col or.Black); //create a Pen
g. drawLi ne(rpen, 10,20, 70, 80); //draw the |ine

}
In this example, we show the Pen object being created each time a paint

event occurs. We might also create the pen once in the window’s
constructor or in the init method we usualy call from within it.

Using Inheritance

Inheritance in C# gives us the ability to create classes which are derived
from existing classes. In new derived classes, we only have to specify the
methods that are new or changed. All the others are provided
automatically from the base class we inherit from. To see how this works,
lets consider writing a simple Rectangle class that draws itself on aform
window. This class has only two methods, the constructor and the draw
method.

nanespace Cshar pPats

public class Rectangle {
private int x, y, w h;
protected Pen rpen;

public Rectangle(int x_, int y_, int w, int h_)
{

X = X_; // save coordi nates

y =Y.

W= W ;

h =h_;

/lcreate a pen
rpen = new Pen(Col or. Bl ack);

public void drawm Graphics g) {
//draw the rectangle
g. DrawRectangl e (rpen, x, y, w, h);

Copyright © , 2002 by James W Cooper

Namespaces

We mentioned the System namespaces above. Visual Studio.Net also
creates a namespace for each project equal to the name of the project

itself. You can change this namespace on the property page, or make it
blank so that the project is not in a namespace. However, you can create
namespaces of your own, and the Rectangle class provides a good
example of areason for doing so. The System.Drawing namespace that
this program requires to use the Graphics object also contains a Rectangle
class. Rather than renaming our new Rectangle class to avoid this name
overlap or “collision,” we can just put the whole Rectangle classin its own
namespace as we show above.

Then, when we declare the variable in the main Form window, we can
declare it as a member of that namespace.

Cshar pPat s. Rect angl e rec;

In this main Form window, we create an instance of our Rectangle class.

private void init() {
rect = new CsharpPats. Rectangl e (10, 20, 70, 100);
}

R LR

public Forml() {
InitializeConponent();
init();

}

Then we add the drawing code to our Paint event handler to do the
drawing and pass the graphics surface on to the Rectangle instance.

private void pic_Paint(object sender, PaintEventArgs e) {
Graphics g = e. G aphics;
rect.draw (g);

}
This gives us the display we see in Figure 5-3.

Copyright © , 2002 by James W Cooper

o

Figure5-3 The Rectangle drawing program.

Creating a Square From a Rectangle

A sguareisjust aspecia case of arectangle, and we can derive a square
class from the rectangle class without writing much new code. Here is the
entire class:

nanmespace CsharpPats {
public class Square : Rectangle {
public Square(int x, int y, int w:base(x, y, w, w {

}
}
}

This Sguare class contains only a constructor, which passes the square
dimensions on to the underlying Rectangle class by calling the constructor
of the parent Rectangle class as part of the Square constructor.

base(x, y, w, w)

Copyright © , 2002 by James W Cooper

87

Note the unusua syntax: the call to the parent class' s constructor follows a
colon and is before the opening brace of the constructor itself.

The Rectangle class creates the pen and does the actual drawing. Note that
there is no draw method at all for the Square class. If you don’t specify a
new method the parent class' s method is used automatically, and thisis
what we want to have happen, here.

The program that draws both a rectangle and a square has a smple
constructor where instances of these objects are created:

private void init() {
rect = new Rectangle (10, 20, 70, 100);
sq = new Square (150, 100, 70);

}

and a paint routine where they are drawn.

private void pic_Paint(object sender, PaintEventArgs e) {
Graphics g = e. G aphics;
rect.draw (Qg);
sq.draw (g);

}

The display is shown in Figure 5-4 for the square and rectangle:

Copyright © , 2002 by James W Cooper

_ioix

Figure 5-4 — Therectangle class and the squar e class derived from it.

Public, Private and Protected

In C#, you can declare both variables and class methods as public, private
or protected. A public method is accessible from other classes and a
private method is accessible only inside that class. Usually, you make all
class variables private and write getXxx and seXxx accessor functions to
set or obtain their values. It is generally abad idea to allow variables
inside a class to be accessed directly from outside the class, since this
violates the principle of encapsulation. In other words, the class is the only
place where the actual data representation should be known, and you
should be able to change the algorithms inside a class without anyone
outside the class being any the wiser.

C# introduces the protected keyword as well. Both variables and methods
can be protected. Protected variables can be accessed within the class and
from any subclasses you derive from it. Similarly, protected methods are
only accessible from that class and its derived classes. They are not

Copyright © , 2002 by James W Cooper

89

publicly accessible from outside the class. If you do not declare any level
of accessibility, private accessibility is assumed.

Overloading

In C# as well as other object oriented languages, you can have several
class methods with the same name as long as they have different calling
arguments or signatures. For example we might want to create an instance
of a StringTokenizer class where we define both the string and the
Separator.

tok = new StringTokenizer("apples, pears", ",");

By declaring constructors with different numbers of arguments we say we
are overloading the constructor. Here are the two constructors.

public StringTokeni zer(string dataline) {
init(dataLine, " ");

public StringTokeni zer(string dataLine, string delim {
init(dataLine, delim;

private void init(string data, string delinm {
/...

}

Of course C# alows us to overload any method as long as we provide
arguments that allow the compiler can distinguish between the various
overloaded (or polymorphic) methods.

Virtual and Override Keywords

If you have a method in a base class that you want to alow derived classes
to override, you must declare it as virtual. This means that a method of the
same name and argument signature in a derived class will be called rather
than the one in the base class. Then, you must declare the method in the
derived class using the override keyword.

Copyright © , 2002 by James W Cooper

If you use the override keyword in a derived class without declaring the
base class's method as virtual the compiler will flag this as an error. If you
create a method in a derived class that is identical in name and argument
signature to one in the base class and do not declare it as overload, this
asoisan error. If you create a method in the derived class and do not
declare it as override and also do not declare the base class' s method as
virtual the code will compile with awarning but will work correctly, with
the derived class's method called as you intended.

Overriding Methodsin Derived Classes

Suppose we want to derive a new class called DoubleRect from Rectangle,
which draws a rectangle in two colors offset by afew pixels. We must
declare the base class draw method as virtual:

public virtual void draw(Graphics g) {
g. DrawRectangl e (rpen, x, y, w, h);

In the derived DoubleRect constructor, we will create ared pen in the
constructor for doing the additional drawing:

public class Doubl eRect: Rectangl e {
private Pen rdPen;
public DoubleRect(int x, int y, int w, int h):
base(x,y,w h) {
rdPen = new Pen (Col or.Red, 2);

}

This means that our new class DoubleRect will have to have its own draw
method. However, this draw method will use the parent class's draw
method but add more drawing of its own.

public override void drawm Graphics g) {

base. draw (g); //draw one rectangl e using parent class
g. DrawRect angl e (rdPen, x +5, y+5, w, h);

}
Note that we want to use the coordinates and size of the rectangle that was

specified in the constructor. We could keep our own copy of these parametersin
the DoubleRect class, or we could change the protection mode of these variables
in the base Rectangle class to protected from private.

Copyright © , 2002 by James W Cooper

91

protected int x, y, w, h;

The final rectangle drawing window is shown in Figure 5-5.

o

Figure5-5 - The DoubleRect classes.

Replacing M ethods Using New

Another way to replace a method in a base class when you cannot declare
the base class method as virtual isto use the new keyword in declaring the
method in the derived class. If you do this, it effectively hides any
methods of that name (regardless of signature) in the base class. In that
case, you cannot make calls to the base method of that name from the
derived class, and must put al the code in the replacement method.

public new void draw(Graphics g) {

g. DrawRectangl e (rpen, x, vy, w, h);
g. DrawRect angl e (rdPen, x +5, y+5, w, h);

Copyright © , 2002 by James W Cooper

92

Overriding Windows Controls

In C# we can easily make new Windows controls based on existing ones
using inheritance. We'll create a Textbox control that highlights all the
text when you tab into it. In C#, we can create that new control by just
deriving a new class from the Textbox class.

We Il start by using the Windows Designer to create a window with two
text boxes on it. Then we'll go to the Project|Add User Control menu and
add an object called HiTextBox. We'll change this to inherit from
TextBox instead of UserControl.

public class Hi TextBox : Textbox {

Then, before we make further changes, we compile the program. The new
HiTextBox control will appear at the bottom of the Toolbox on the left of
the development environment. Y ou can create visual instarces of the
HtextBox on any windows form you create. Thisis shown in Figure 5-6.

£33 PrintPreviewContral
& ErrorProvider

% PrintDocument

ﬂ PagesSetupDialog
@ CrystalReportviewer
£33 HiTextBox

Cliphoard Ring | - |

General

Figure 5-6 - The Toolbox, showing the new control we created and an
instance of the HiTextBox on the Windows Designer pane of a new
form.

Now we can modify this class and insert the code to do the highlighting.

public class Hi TextBox : System W ndows. For ns. Text Box

{

Copyright © , 2002 by James W Cooper

93

private Contai ner conponents = null;

private void init() {
//add event handler to Enter event
this. Enter += new System Event Handl er (highlight);

// event handl er for highlight event

private void highlight(object obj, System EventArgs e) {
this.SelectionStart =0;
this. Sel ectionLength =this. Text.Length ;

}

N R T

public Hi Text Box() {
InitializeConponent();
init();

}

And that’ s the whole process. We have derived a new Windows control in
about 10 lines of code. That’s pretty powerful. Y ou can see the resulting
program in Figure Figure 5-6. If you run this program, you might at first
think that the ordinary TextBox and the HiTextBox behave the same,
because tabbing between them makes them both highlight. Thisis the
“autohighlight” feature of the C# textbox. However, if you click inside the
Textbox and the HiTextBox and tab back and forth, you will seein Figure
5-7 that only our derived HiTextBox continues to highlight.

[Highlighted text dem _ (o]]
[Go
IN-::rmaI
Highlighted

Copyright © , 2002 by James W Cooper

Figure5-7 A new derived HiTextbox control and a regular Textbox control.

I nterfaces

An interface is a declaration that a class will contain a specific set of
methods with specific arguments. If a class has those methods, it is said to
implement that interface. It is essentially a contract or promise that a class
will contain all the methods described by that interface. Interfaces declare
the signatures of public methods, but do not contain method bodies.

If a class implements an interface called Xyz, you can refer to that classas
if it was of type Xyz aswell as by its own type. Since C# only alows a
single tree of inheritance, thisis the only way for a class to be a member
of two or more base classes.

Let’s take the example of a class that provides an interface to a multiple
select list like alist box or a series of check boxes.

/lan interface to any group of conponents
//that can return zero or nore selected itens
//the nanes are returned in an Arraylist
public interface Miultisel {
void clear();
Arrayli st getSel ected();
Panel get W ndow();
}

When you implement the methods of an interface in concrete classes, you
must declare that the class uses that interface, and, you must provide an
implementation of each method in that interface as well, as we illustrate
below.

/1l ListSel «class inplements MiltiSel interface
public class ListSel : Miltisel {

public ListSel () {
}

public void clear() {

}

public ArrayList getSelected() {
return new ArraylList ();

}

Copyright © , 2002 by James W Cooper

95

public Panel getWndow() {
return new Panel ();
}

}

WEe'll show how to use this interface when we discuss the Builder pattern.

Abstract Classes

An abstract class declares one or more methods but |eaves them
unimplemented. If you declare a method as abstract, you must also declare
the class as abstract. Suppose, for example, that we define a base class
called Shape. It will save some parameters and create a Pen object to draw
with. However, we'll leave the actual draw method unimplemented, since
every different kind of shape will need a different kind of drawing
procedure:

public abstract class Shape {
protected i nt height, width;
protected i nt xpos, ypos;
protected Pen bPen;

[]-----
public Shape(int x, int y, int h, int w {
width = w
hei ght = h;
Xpos = X;
ypos =Y,
bPen = new Pen(Col or. Bl ack);
}
[]-----
public abstract void draw Graphics g);
/]-----

public virtual float getArea() ({
return height * width;
}

}
Note that we declare the draw method as abstract and end it with a
semicolon rather than including any code between braces. We also declare
the overall class as abstract.

Copyright © , 2002 by James W Cooper

9%

Y ou can’t create an instance of an abstract class like Shape, though. You
can only create instances of derived classes in which the abstract methods
arefilled in. So, lets create a Rectangle class that does just that:

public class Rectangl e: Shape {
public Rectangle(int x, int y,int h, int w:
base(x,y, h,w {}

public override void draw(G aphics g) {
g. DrawRect angl e (bPen, xpos, ypos, w dth, height);
}
}

Thisis a complete class that you can instantiate. It has areal draw method.

In the same way, we could create a Circle class which hasits own draw
method:

public class Circle :Shape {
public Grcle(int x, int y, int r):
base(x,y,r,r) { }
[]-----

public override void drawm Graphics g) {
g. DrawEl | i pse (bPen, xpos, ypos, w dth, height);
}
}

Now, if we want to draw the circle and rectangle, we just create instances
of them in the init method we call from our constructor. Note that since
they are both of base type Shape we can treat them as Shape objects:
public class Forml : System W ndows. Forms. Form {

private PictureBox pictureBoxl;

private Contai ner conponents = null;
private Shape rect, circ;

1]-----

public Formi() {
InitializeConponent();
init();

private void init() {
rect new Cshar pPat s. Rectangl e (50, 60, 70, 100);
circ new Circle (100,60, 50);

Copyright © , 2002 by James W Cooper

97

Finally, we draw the two objects by calling their draw methods from the
paint event handler we create as we did above:

private void pictureBox1l Paint(object sender, PaintEventArgs e) {
Graphics g = e. Gaphics ;
rect.draw (Qg);
circ.draw (Qg);

}

We see this program executing in Figure 5-8

[® abstract class demo =10 x|

O

Figure5-8 — An abstract class system drawing a Rectangle and Circle

Comparing Interfaces and Abstract Classes

When you create an interface, you are creating a set of one or more
method definitions that you must write in each class that implements that
interface. There is no default method code generated: you must include it
yourself. The advantage of interfaces is that they provide a way for a class
to appear to be part of two classes: one inheritance hierarchy and one from

Copyright © , 2002 by James W Cooper

the interface. If you leave an interface method out of a class that is
supposed to implement that interface, the compiler will generate an error.

When you create an abstract class, you are creating a base class that might
have one or more complete, working methods, but at least one that is left
unimplemented, and declared abstract. Y ou can't instantiate an abstract
class, but must derive classes from it that do contain implementations of
the abstract methods. If all the methods of an abstract class are
unimplemented in the base class, it is essentially the same as an interface,
but with the restriction that you can’t make a class inherit from it as well
as from another class hierarchy as you could with an interface. The
purpose of abstract classes is to provide a base class definition for how a
set of derived classes will work, and then allow the programmer to fill
these implementations in differently in the various derived classes.

Another related approach is to create base classes with empty methods.
These guarantee that all the derived classes will compile, but that the
default action for each event isto do nothing at al. Here is a Shape class
like that:
public class Null Shape {

protected int height, w dth;

protected i nt xpos, ypos;

protected Pen bPen;
[]-----

public Shape(int x, int y, int h, int w {
width = w
hei ght = h;
Xpos = X;
ypos =Yy;
bPen = new Pen(Col or. Bl ack);

public void draw(G aphics g){}

[]-----

public virtual float getArea() ({
return height * wi dth;

}

Copyright © , 2002 by James W Cooper

%

Note that the draw method is now an empty method. Derived classes will
compile without error, but they won’t do anything much. And there will be
no hint what method you are supposed to override, as you would get from
using an abstract class.

Summary

WEe' ve seen the shape of most of the important features in C# in this
chapter. C# provides inheritance, constructors and the ability to overload
methods to provide aternate versions. This leads to the ability to create
new derived versions even of Windows controls. In the chapters that
follow, we'll show you how you can write design patterns in C#.

Programs on the CD-ROM

\'I nheritance\ Rect Draw Rectangle and Square
\ I nheri tance\ Doubl eRect DoubleRect
\Inhertance\ Hi t ext A highlighted textbox
\'I nheritance\ abstract Abstract Shape

Copyright © , 2002 by James W Cooper

100

6. UML Diagrams

We have illustrated the patterns in this book with diagrams drawn using
Unified Modeling Language (UML). This ssimple diagramming style was
developed from work done by Grady Booch, James Rumbaugh, and Ivar
Jacobson, which resulted in amerging of ideas into a single specification
and, eventually, a standard. Y ou can read details of how to use UML in
any number of books such as those by Booch et al. (1998), Fowler and
Scott (1997), and Grand (1998). We'll outline the basics you'll need in
this introduction.

Basic UML diagrams consist of boxes representing classes. Let’s consider
the following class (which has very little actua function).

public class Person {
private string nane;
private int age;
[l-----
public Person(string nm int ag) {
name = nm
age = ag;

}

public string makeJob() {
return "hired";

}

public int getAge() {
return age

public void splitNames() {

}
}

We can represent this classin UML, as shown in Figure 6-1.

Copyright © , 2002 by James W Cooper

